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INTRODUCTION

Why did | write this book?

This book is the first of what I hope will be a variety of books on the mathematics of
origami. It grew out of my life-long passion for the two subjects. I started learning
origami at age eight, after my uncle gave me an origami instruction book. While
many of the instructions in this translated-from-Japanese book were impossibly
cryptic, [ managed to figure out many of them and, for some reason, it stuck. A
few years earlier I had realized that I was good at math, that the patterns found in
addition and multiplication were easy—and fun—to memorize. I also distinctly
remember noticing a link between origami and mathematics during those years.
I had folded an animal, probably the classic flapping bird, and instead of putting
it in my ever-growing box of folded models, I carefully unfolded it. The pattern
of crease lines on the unfolded paper was intricate and lovely. Clearly, it seemed
to me, there was some mathematics going on here. The pattern of lines must be
following some geometric rules. But understanding these rules was well beyond
my comprehension, or so I thought at the time.

My next visit to the crossroads of origami and mathematics occurred while
I was in college. By that time I was well-versed in complex-level origami, hav-
ing devoured the books of John Montroll, Robert Lang, Jun Maekawa, and Peter
Engel. (See [Eng89], [Kas83], [Lan95], [Mon79].) I had been to a few origami con-
ventions in New York City (hosted by the nonprofit organization now known as
OrigamiUSA) and even invented a number of my own origami designs. I had also
taken many math classes and was considering a career in the mathematical sci-
ences. But then one thing happened that forced me to think about and explore the
intersection of origami and math—I obtained a copy of the classic book Origami
for the Connoisseur by Kunhiko Kasahara and Toshi Takahama [Kas87]. At first
I thought this was just another complex-level origami book. In fact, I bought it
because it contained instructions for John Montroll’s infamous stegosaurus model
(impeccably detailed and made from one uncut square of paper). Little did I know
that this book also contained instructions for something that would grip my inter-
est like a vice and result in dozens of hours of procrastination.

This book provided my first exposure to modular origami, whereby many
small squares of paper are folded into identical “units” which are then locked to-
gether to form a variety of shapes. The units in Origami for the Connoisseur allowed
one to make representations of all the Platonic solids: the tetrahedron, cube, octa-
hedron, icosahedron, and dodecahedron. Prior to this [ had only a casual under-
standing of these objects, but after folding many, sometimes hundreds of units to
make these and other polyhedral shapes, I became intimately familiar with them.
Modular origami was, quite literally, my first tutor on the subject of polyhedral
geometry.
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In retrospect, it is easy for me to see what was happening, although at the
time I only knew that I was having fun and making beautiful, geometric objects
with which to decorate my dorm room. Origami was teaching me, giving me
a context in which I had to explore and master properties of various polyhedral
objects. How do I arrange the units around each vertex to form a cubeoctahedron?
How many units of each color would I need to make an interesting coloring of the
icosadedecahedron?

Over the years afterward, during graduate school and then as a professor at
Merrimack College, I continued to collect everything I could find about the math-
ematics of origami. Since many sources were hard to find or were merely hints
at underlying patterns, I often had to do my own research to help put the pieces
together. In the process I saw origami intersect a variety of mathematical topics,
from the more obvious realm of geometry to the fields of algebra, number theory,
and combinatorics. It seemed that the more I looked, the more branches of math
origami overlapped.

Simultaneous to this gathering of origami-math material, I began giving lec-
tures on the subject for college and high-school students and their teachers. From
this the interest in origami as a mathematical education tool became very clear.
Teachers would regularly ask me where they could find more information on how
to use origami in their classes. Eventually a few books did emerge, like [Fra99],
that offered ways to use modular origami to teach geometric concepts, but none
of these were done at the college level or touch the variety of topics that origami
can offer.

Thus came about this book. My goal was to compile many of the origami-math
aspects that I had found and present them in a way that would be easy for college
or advanced high-school teachers to use in their classes.

How to use this book

Twenty-two activities are included in this book that cover a variety of mathemati-
cal areas. The intent is for mathematics instructors to be able to find something of
use no matter what college or, perhaps, high-school course is being taught.

Each activity begins with a list of courses in which it might fit. In the appendix
you'll find a cross-reference that lists which activity might match a given course.

However, it is important to realize that many of these activities can be effec-
tively used in a variety of courses at a variety of levels. The angle trisection ac-
tivity, for example, has been very popular among high-school geometry teachers,
yet it also makes for a very illustrative diversion in an upper-level Galois Theory
course. The PHiZZ unit Buckyball activity can be a great extended project for “lib-
eral arts” general-education math classes, but it also provides a hands-on way for
students of graph theory to explore the connections between 3-edge coloring cu-
bic planar graphs and the Four Color Theorem, not to mention the opportunity to
classify geodesic spheres in an upper-level geometry class.
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In short, the key word in terms of using this book is flexibility. Each activity
includes handouts that may be photocopied and used with your class as well as
notes to the instructor on solutions, how the handouts can be used, suggestions on
pedagogy, and further directions that can be taken.

But you, depending on your class, your time, and your interest in origami,
can and are encouraged to find your own ways to use this material. Perhaps it
would be better for you to present the Folding Equilateral Triangles in a Square
and Can Origami Trisect an Angle? activities at the same time. Perhaps you'd
prefer to use only part of a handout or add on investigative questions of your own.
Perhaps these would fit your class better as homework or extra-credit assignments.
Perhaps one of these activities could be the basis for a senior research project.
Perhaps you could spend a whole year using these activities for your college’s
Math Club or your high school’s Math Circle.

To provide readers with as much flexibility as possible, our publisher, A K
Peters, is making all of the handouts in this book available online. Many profes-
sors who beta-tested these activities had access to PDF versions of the handouts
and thus were able to modify them to taste. Some copied the graphics into sepa-
rate documents so that they could write their own text and modify the questions.
Others removed certain questions or combined several activities into one. Others
chose to insert more explanation for their students. You are the one most familiar
with your students, and thus we want to give you the ability to tailor the activities
to your liking.

The online PDF versions of the handouts can be found on the A K Peters web
site: http:/ /www.akpeters.com/ProjectOrigami.

I am especially interested to know what people do with these activities. If you
modify or find interesting ways to utilize them, please feel free to email me and
share your experiences: Thomas.Hull@merrimack.edu.

Discovery-based learning

The main pedagogical approach behind all the activities is one that is active and
discovery-based (as opposed to, say, a lecture-based approach). There is a logical
choice for this that deserves some explanation.

One of the main attractions of using origami to teach math is that it requires
hands-on participation. There’s no chance of someone hiding in the back of the
room or falling asleep when everyone is trying to fold a hyperbolic paraboloid
(see the Rigid Folds 1 activity). The fact that origami is, by definition, hands-on
makes it a natural fit for active learning. One could even make the argument than
while folding papert, especially when making geometric models, latent mathemat-
ical learning will always happen. There’s no way a student can make a dodeca-
hedron out of thirty PHiZZ units without an understanding of some fundamental
properties of this object.

Therefore, when choosing to use origami as a vehicle for more organized math-
ematics instruction, an easy choice is to let the students discover things for them-
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selves. This approach to teaching mathematics, where students are allowed to ex-
periment and discover basic principles and theorems themselves, was pioneered
by David Henderson in college-level geometry courses (see [Hen01]). The ap-
proach is based not only on exploration but also in students learning how to ask the
right questions while exploring.

I tried to achieve a mixture of this in the handouts in this book. Some of them
try to lead the student towards asking the proper questions that lead to theorems,
like in the Haga's “Origamics” activities. Others, like the Exploring Flat Vertex
Folds activity, is deliberately very open-ended. The specific purpose in such open-
ended activities is for students to gain experience with asking questions and build-
ing conjectures.

I highly encourage instructors to not shy away from this approach. Too often
professors feel that they need to instruct their students on the fine art of conjecture-
building. But the best way to learn this process is to just do it. Some students
behave as if they were just waiting to be asked to make conjectures; once you get
them going, they can’t stop! Others do have difficulty with open-ended assign-
ments, but again, these difficulties arise from not knowing how to ask questions.
Engaging such students in a Socratic dialog often helps a lot.

For example, a student who can’t find any patterns in flat vertex folds might be
asked, “Well, is there anything going on with the mountain and valley creases?”
If that doesn’t help, then a more specific question, “How many of them are there
at your vertex?” will get things going. It's these questions that help students see
that the piece of folded paper is their experimental laboratory. The math ceases to
be an abstract entity, only existing in their mind. It becomes tangible, something
they can hold in their hand and count or use to compute data from which patterns,
conjectures, and theorems flow.

Nothing gives students a feeling of ownership of such discovery like the per-
sonal touch of their own names. Sure, the fact that the difference between the
number of mountain and valley creases at a flat foldable vertex is always two is
known as the Maekawa-Justin Theorem (see the Exploring Flat Vertex Folds activ-
ity). But it might as well be christened “Danielle’s Conjecture” for a few classes as
students discover and try to prove it.

However, it should be noted that a completely 100% discovery-based instruc-
tion method is not for everyone. Instructors who are more comfortable with
lecture-based instruction can still use the handouts for, say, 20 minutes of in-class
activity and then wrap up the main points and student observations via lecture.
Still, it might be more interesting to see what the students have come up with and
ask some of them to present their results to the whole class.

The value of the discovery-based approach should be clear, in that it provides
students with the experience of being a mathematical researcher. If helping train
your students for independent research or for a senior capstone experience is one
of your goals, then by all means give this approach a try. In fact, if you think
about the skills and experiences needed to become comfortable with mathematical
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inquiry, you just might end up totally changing the way you approach teaching
your course. For example, it's very important for math researchers to understand
that not succeeding is OK—that failure is a natural part of discovery. Thus, when
exploring one of these origami activities in class, instructors should be prepared
for their students to not succeed and realize that this is fine. This leads to the next
topic.

Preparing yourself

The preparation required for these activities takes several forms.

First of all, if the activity has a strong folding component, like folding modular
units or folding a crane, instructors need to practice folding these things them-
selves in advance. What's more, instructors need to think, as they fold, about
how they would explain the folding process to a classroom of students or to in-
dividuals who are stuck. Teaching origami is quite a bit different from teaching
math. It involves trying to communicate three-dimensional movements by “show
and tell.” The handout instructions for folding in these activities are meant to
help, but some people have a very hard time translating two-dimensional
instructions into three-dimensional movements of their hands and paper. Always
assume that there will be students who need one-on-one help with the folding
instructions.

If the technology is available, using a document camera (also known as a digital
imager or Elmo) can be a big help. Document cameras allow one to place their
hands and a piece of paper underneath a camera that will then project this image
on an overhead screen. Using this, a whole class can see what your hands are
doing, up-close, as you fold the paper. In my experience, this is by far the most
efficient way of teaching a whole class to fold paper. It also works very well for
showing how to lock modular units together. Such units are often small, and a
good document camera will allow you to zoom-in on the details of putting the
units together properly.

Note, however, that while it is important for instructors who, say, are using the
Making Origami Buckyballs activity to become very familiar with the PHiZZ unit,
understand its locking process well, and make a 30-unit dodecahedron of their
own (and properly 3-color it), other longer projects can be left to the students to
figure out. Instructors are not likely to have the time to make a 270-unit Buckyball
or an 88-unit torus beforehand, although these projects are fun and make great
office decorations. Students should be encouraged to attempt larger projects. The
fact that you might not have done them yourself can give students an extra feeling
of accomplishment over their achievements.

Aside from the paper folding itself, it goes without saying that all instructors
will have to tailor these activities to their own classes. The chances of a success-
ful experience with these activities will increase dramatically if you make sure
that your goals and expectations of the activity are clearly focused. Is your main
goal to reinforce student understanding of Euler’s formula and its uses (as in the
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Buckyball activity)? Is it for your students to see hands-on applications of the
algebra of Z,, and number theory (as done in the Folding Strips into Knots and
Fujimoto Approximation activity)? Or do you see the main goal as being to in-
troduce more active participation in class or for students to explore and discover
mathematics on their own?

The answers to these questions will allow you to clarify how to use the activ-
ity in class—how much time to spend on the hands-on part versus group discus-
sion, or whether to assign the folding instructions for homework beforehand, or
whether to expect the students to come up with very many conjectures on their
own in class. Of course, the first time any of us try a new activity, especially one
with an active or discover-based learning component, it needs to be thought of as
an experiment. The second time you try using any of these activities will require
much less preparation.

Where to find paper

The question of where to obtain paper is a bit complicated. It entirely depends
on what you or your students will be folding. While paper is paper, it comes in
many different types. Some projects and activities can be done with any type of
paper, but often there are preferences that can make the students’ and instructor’s
job easier. I'll break these preferences down into categories.

For PHIZZ units, Flat Vertex Fold, Haga's Origamics,
Matrix Model, Butterfly Bomb activities

I recommend three-inch square memo cube paper, which can be easily bought
(for about $3 for 500 sheets) from office supply stores and comes in a rainbow of
colors. Look for it near the Post-it note section, but make sure you do not buy Post-
it notes! (The sticky side gets in the way of folding and sliding modular units into
one another.) The best memo cube paper is the type that comes in its own plastic
container—this paper is more accurately square than the type that doesn’t come
in a box. Also, if you look carefully you can find blank memo cube paper. If you're
unlucky all they'll have is paper that’s blank on one side and has “while you were
out” office messages printed on the other side. That works just as well, and your
students may find it more humorous anyway.

Business cards

Once you get bitten by the business card modular origami bug (and yes, there are
many other modular units to be made from business cards than those presented in
this book), you'll be very interested in collecting large supplies of discarded cards.
This can sometimes be very easy to do. Visit an office supply or printing store
where they print business cards for customers and ask if they have any unwanted
cards. Often such places will have boxes of cards with printer errors or that were
never picked up and have been sitting around for months. If you make it known
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that you're interested in such unwanted business cards, they’ll often save such
prizes for you when they turn up.

In a pinch, you can buy blank cards, but ones with printing on them can be
much more interesting. Along those lines, be on the lookout for colorful or nicely
patterned business cards at restaurants. Pinching ten or so of these at a time can
slowly build a good collection. You can also ask students to acquire business cards
of their own beforehand and bring them to class.

Strips of paper (for folding knots)

It can be difficult to find rolls of thin paper. Ticker-tape paper is ideal, but you can
also get rolls of accounting tape, which is what paper accountants use for those
calculators that print out the calculations as they go. You can usually find rolls of
such paper at office supply stores.

Actual origami paper

This is paper that is colored on one side and white on the other, and origamists
often call it “kami” or “plain kami.” It folds very well and is considered “special”
origami paper. It is the paper you probably want students using if they are folding
cranes (for the Folding and Coloring a Crane activity) or other traditional origami
models. You can find it at any art supply store. It usually costs $5-$6 (US) for
100 squares, 6 inches per side, in a variety of colors. You can also order it on the
web at OrigamiUSA (a national nonprofit organization—if you're an advocate of
origami, or want to become one, you should become a member, since it gives you
a magazine, ability to attend origami conventions, and a 10% discount on buying
things from them. See http://www.origami-usa.org).

Other options (and the Five Intersecting Tetrahedra)

The most basic paper you can use is photocopy paper. You can use up that pile of
scrap 8 1/2 inch by 11 inch paper you have stacked in your office by cutting it into
squares with a paper cutter. This makes great all-purpose, no frills paper to use
in class. It’s fine paper to use when folding cranes and is very good to use when
making the Five Intersecting Tetrahedra model, since it is heavier than normal
origami paper. Also, you can get it in a variety of colors from any office supply
store or from the Print Center at your college or university.

In fact, a very good resource for square paper and business cards (and maybe
even strips of paper) is your friendly Print Center on campus. While not every-
one has a friendly Print Center at their school, it would be worth your time to
find out if you do. Pay them a visit and tell them that you're doing origami in
your classes. They'll probably be happy to cut paper to size for you or give you
discarded business cards, or they might have long strips of paper handy.
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Other sources

In each activity I've tried to provide references for the material as well as for places
where more information can be learned. Nonetheless, while interest in origami-
mathematics has deﬁnitely been increasing, there still are not very many general
sources on origami-mathematics.

However, there are a few books with chapters devoted to paper folding as well
as some proceedings and other books that are useful. Since these sources might be
very valuable, depending on your specific interests in origami-math, they deserve
special mention.

Please note, however, that in this short list I am only mentioning those refer-
ences that are in English. There are a few books in Japanese that deal exclusively
with the mathematics of origami, like [Ger02], [Hag99], and [Hus79].

Galois Theory by David Cox [Cox04]. This book is excellent anyway because
David Cox is such a good writer. But Chapter 10 is devoted to geometric construc-
tions, and Section 3 of this chapter is on origami. This is probably the best expo-
sition of an algebraic, Galois Theory approach to origami geometric constructions
available. Instructors interested in using the Folding a Parabola, Can Origami
Trisect an Angle?, and Solving Cubic Equations activities in an advanced algebra
class should consult this book.

Origami®: Third International Meeting of Origami Science, Mathematics, and
Education by Thomas Hull, editor [Hul02-2]. This is the proceedings of 30SME,
the Third International Meeting of Origami Science, Mathematics, and Education,
which took place in Monterey, CA in 2001. The first two such meetings took place
in Italy (1989) and Japan (1994), but the proceedings for those meetings are out
of print and very hard to find. The third such proceedings is still in print and
presents an excellent snapshot of the state of origami research, in science, math,
and education, in 2001. While I am, as editor, biased, I feel confident in saying that
no matter what your taste in origami you'll find many of the articles in this book
of great interest.

Origami Design Secrets: Mathematical Methods for an Ancient Art by Robert
Lang [Lan03-1]. Robert Lang is one of the pre-eminent creators of complex, artis-
tic origami models, and this book is his magnum opus. It describes in detail Lang’s
TreeMaker algorithm as well as other origami design techniques. While none of
the activities in Project Origami deal directly with origami model design (that is,
trying to answer the question, “How do you fold an insect from a square without
making any cuts?”), the techniques that modern origamists use follow from math-
ematical principles of origami (for example, things like Maekawa and Kawasaki’s
Theorems from the Exploring Flat Vertex Folds activity). Students who get bitten
by the origami bug should devour this book. It’s a great source for student projects
in this area.
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Mathematical Reflections: In a Room with Many Mirrors by Peter Hilton, Derek
Holton, and Jean Pedersen [Hil97]. This book (in Springer’s Undergraduate
Texts in Mathematics series) has a 57-page chapter titled Paper-Folding and Num-
ber Theory. It collects much of the research done by Peter Hilton and Jean
Pedersen on the number theory behind folding strips of paper into polygons and
polyhedra. This is very related to the topics covered in my Fujimoto Approxima-
tion and Folding Strips into Knots activities, although Hilton et al. use a different
approach and take the material in different directions. If these activities appeal to
you, definitely explore this chapter.

Origami for the Connoisseur by Kunihiko Kasahara and Toshie Takahama
[Kas87]. Of the many origami instructions books in print, this one is the most
mathematical (and was mentioned earlier in this Introduction). It contains in-
structions for many geometric models, like polyhedra and spiral shells, both from
single sheets of paper and modular. It also contains references to Maekawa and
Kawasaki’s Theorems as well as some of Haga's origamics activities. While sev-
eral of the models are very complicated, requiring expert origami skills, others are
surprisingly simple and elegant. This is a gem of a book.

Geometric Constructions by George E. Martin [Mar98]. The last chapter
(14 pages) of this book is devoted to geometric constructions via paper folding.
Martin’s approach is purely geometric, as opposed to Cox’s algebraic analysis, so
this would appeal to teachers of geometry who want to learn more about origami
geometry. Martin concentrates on only the most sophisticated of the single-fold
origami operations—the one explored in the Solving Cubic Equations activity.
This is all one needs, however, to perform constructions such as angle trisections
and cube doublings. Martin also compares this to other construction methods, for
instance, using a marked ruler.

Fragments of Infinity by Ivars Peterson [Pet01]. This is a popular math book
for a general audience and has a 22-page chapter on origami called Plane Folds.
While not a math text, it does give a good overview of flat origami crease patterns,
Maekawa's Theorem, Lang's TreeMaker algorithm, and origami tessellations. In
particular, it includes some wonderful pictures of Chris Palmer’s complex folded
tessellations. If you found the Folding a Square Twist activity exciting, definitely
check this out.

Geometric Exercises in Paper Folding by T. Sundra Row [Row66]. This book
is a classic. T. Sundra Row was an Indian mathematics teacher who, in the late
1800s, wrote this book on the basic geometric constructions that can be performed
by paper folding. It attracted the attention of Felix Klein, and after he referenced
it in some of his publications, Western publishers began printing it world-wide.
The latest printing was by Dover, and it should not be hard to find in most li-
braries. A careful reading of the book makes it unclear whether Row knew that
origami could do things like trisect angles (no method for this is given in the book,
but Row does discuss how paper folding relates to solving some types of cubic
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equations). Nonetheless, this is an excellent source of methods for folding a va-
riety of polygons and shapes in paper. While written in the very formal style of
over a hundred years ago, the construction methods are simple and could easily
be adapted for modern geometry classes (for both college and high school).
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Activity 1
FOLDING EQUILATERAL
TRIANGLES IN A SQUARE

For courses: geometry, calculus (optimization), modeling

Summary

Students are asked to find a way to fold an equilateral triangle from a square piece
of paper. Then the challenge of finding the largest possible equilateral triangle that
can be folded from a square is given. Of course, students need to prove that their
conjectured triangle is the largest possible.

Content

The geometry component of this problem only requires the ability to work with
30°-60°-90° triangles. However, more creative geometrical insights can lead to
more elegant solutions.

For a calculus class, this problem could actually be posed without any men-
tion of origami: What is the largest equilateral triangle that can be inscribed in a
square? But knowing that paper folders actually use this knowledge can provide
extra motivation. This is a challenging modeling problem that can be completely
done without resorting to derivatives, provided the students set up the model
carefully, know trigonometry solidly, and do a proper graphical analysis. As an
optimization problem, it breaks away from the mold that is typically encountered
in calculus textbooks, thus forcing students to apply their knowledge to a brand-
new, real-life situation.

Handouts
Three optional handouts are provided:

(1) Introduces the general problem of folding an equilateral triangle inside a
square.

(2) Provides a few guided steps in setting up the optimization model.

(3) Leads students step-by-step through the optimization model.
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Time commitment

Handout 1 will require about 40 minutes of class time, including student explo-
ration and presentation of their triangle-folding methods to the rest of the class.

Handout 2 or 3, if done in class, could take 50-60 minutes total, depending on
how quick your students are at making mathematical models.



HANDOUT

How to Fold an Equilateral Triangle

The goal of this activity is to fold an equilateral triangle from a square piece of

paper.

Question 1: First fold your square to produce a 30°-60°-90° triangle inside it. Hint:
you want your folds to make the hypothenuse twice as long as one of the sides.
Keep trying! Explain why your method works in the space below.

Question 2: Now use what you did in Question 1 to fold an equilateral triangle

inside a square.

Follow-up: If the side length of your original square is 1, what is the length of a
side of your equilateral triangle? Would it be possible to make the triangle’s side
length bigger?



HANDOUT

What's the Biggest Equilateral Triangle
In a Square?

If we are going to turn a square piece of paper into an equilateral triangle, we'd
like to make the biggest possible triangle. In this activity your task is to make a
mathematical model to find the equilateral triangle with the maximum area that
we can fit inside a square. Follow the steps below to help set up the model.

Question 1: If such a triangle is maximal, then can we assume that one of its
corners will coincide with a corner of the square? Why?

Question 2: Assuming Question 1, draw a picture of what your triangle-in-the-
square might look like, where the “common corner” of the triangle and square
is in the lower left. Now you'll need to create your model by introducing some
variables. What might they be? (Hint: one will be the angle between the bottom
of the square and the bottom of the triangle. Call this one 6.)

Question 3: One of your variables will be your parameter that you'll change un-
til you get the maximum area of the triangle. Pick one variable (and try to pick
wisely—a bad choice may make the problem harder) and then come up with a
formula for the area of the triangle in terms of your variable.
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Question 4: With your formula in hand, use techniques you know to find the value
of your variable that gives you the maximum area for the equilateral triangle. Be
sure to pay attention to the proper range of your parameter.

Question 5: So, what is your answer? What triangle gives the biggest area? Find
a folding method that produces this triangle.

Follow-up: Your answer to Question 5 can also give a way to fold the largest
regular hexagon inside a square piece of paper. Can you see how this would work?



HANDOUT

What's the Biggest Equilateral Triangle
In a Square?

In this activity your task is to find the biggest equilateral triangle that can fit inside
a square of side length 1. (Note: an equilateral triangle is the triangle with all sides
of equal length and all three angles measuring 60°.) The step-by-step procedure
will help vou find a mathematical model for this problem, and then to solve the
optimization problem of finding the triangle’s position and maximum area.

Here are some random examples:

Question 1: If such a triangle is maximal, then can we assume that one of its
corners will coincide with a corner of the square? (Hint: The answer is yes. Explain

why.)

Question 2: Assuming Step 1 above, draw a picture of what your triangle-in-the-
square might look like, where the common corner of the two figures is in the lower
left. (Hint: see one of the four examples above.) Now you'll need to create your
model by labeling your picture with some variables. (Hint: Let 0 be the angle
between the bottom of the square and the bottom of the triangle. Let x be the side
length of the triangle.)
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Question 3: Come up with the formula for the area of the triangle in terms of
one variable, x. Then, find an equation that relates your two variables, x and 6.
Combine the two to get the formula for the area of the triangle in terms of only
one variable, 6. (Hint: your last formula will be A = 3? sec? 0.)

Question 4: What is the range of your variable §? Explain. (Hint: the range should
be 0% <6 < 15°)
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Question 5: Most important part: With your formula and the range for 6 in hand,
use techniques of optimization to find the value of 6 that gives you the maximum
area for the equilateral triangle. Also, find the value of this maximum area. (Hint:
For simplicity, you may want to express all trigonometric functions in terms of sin
and cos).
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SOLUTION AND PEDAGOGY

Folding an equilateral triangle

There are a number of ways to fold an equilateral triangle in a square. All involve
finding a way to produce a 60° angle. Your students might find new and creative
ways to do this, but the most common way people discover is shown below. (We
assume in these pictures that the side of the original square has length 1.)

The origami “move” here is to take one corner, A, and fold it to the center line
(so the paper must have been creased in half first) while at the same time making
sure the crease you make goes through corner B .1 We let P be the image of point
A under this fold. Then we have that ABP is an equilateral triangle. This can be
seen in a number of different ways:

¢ Let C be the midpoint of AB. Then considering ABCP, we have that BP has
length 1 (since it is the image of AB) and BC has length 1/2. The Pythagorean
Theorem then tells us that CP has length \/3/ 2, s0 ABCP is a 30°-60°-90° trian-
gle. Then creasing AP gives us an equilateral triangle.

e Since BP is the image of AB under the folding, BP has length 1. We can then
either say, “Now fold B to the center line in the same way,” or "By symmetry,”
to get that AP has length 1 as well. Thus MNABP is an equilateral triangle.

In the solution pictured here, the length of the side of our triangle is the same as the
side of the square. However, if we imagine rotating the triangle counterclockwise
a little bit about the point A, we could then expand the sides some and still remain
inside the square. So it is possible to make a bigger equilateral triangle inside the
square.

Pedagogy. Many students will first try to construct a 30°-60°-90° triangle by try-
ing to make the right angle be at a corner of the square. This is not the easiest
thing to do, and suggesting that such students try folding the corner inside the
square instead can get them over this mental block. Suggesting that they use the
1/2 center line can also be offered.

1This is a standard origami move: a point p; is folded onto a line !, but that is not enough to
determine where exactly the crease should be made. So a second point, p,, is needed, where we make
sure the crease line goes through p; as well as making p; land on I. See the Folding a Parabola activity
for more information.
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Oftentimes students overhear ideas from other groups in class, or a good idea
gets suggested from one group to another. That's fine, but everyone should write
down a proof that their triangle is really 30°-60°-90° or equilateral. Groups should
present their proofs to the class so that everyone can see that it can be done in
more than one way. Writing up their proofs formally can be assigned individually
for homework, if desired. (This should be easy after the group work, but writing
things up “for real” is still a very valuable activity.)

Finding the maximal triangle

There are two versions of this handout: one that provides only a frame for the
problem, leaving all the details to the students, and one that walks the students
through the problem, step-by-step. The solutions are basically the same and pre-
sented here in tandem.

For the first question on the handout, the answer is yes. If no corner of the equi-
lateral triangle is on a corner of the square, then the triangle must not be touching
one side of the square (since the triangle has three corners and the square has four
sides). Assume this is the left side. Then the three corners of the triangle must
be touching the three other sides of the square, for otherwise we could make the
triangle bigger. Then we can slide the triangle to the left until it touches this left
side with one of the corners that touches either the top or bottom side as well. This
puts a corner of the triangle on a corner of the square.

To set up the model, students will need a picture something like the above fig-
ure. The base of the triangle (length x) should extend from the bottom left corner
to the right side of the square. Then we need to consider the range 0° < § < 15°,
for if 8 > 15°, then we'll have & < 15° and we’d be in a case symmetric to one
with @ > 15°. In other words, the symmetry of the square restricts the range of 6
that we need to consider.

We need to find a formula for the area A of the equilateral triangle and then try
to maximize this formula in terms of f. (We want to do this in terms of 6, instead
of x, because @ is the variable that tells us the position of the triangle in the square.)
Since the base of the triangle is x, its height is (\/g/Q)x. So A = (\/§/4}x2, but we
wanted it in terms of 8. Well, cos@ = 1/x,s0 x = 1/ cos 6 = sec . Thus we have

V3

A= T sec? 0.
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We could take the derivative of this and try to maximize it using calculus, but
we don't really need to. Since cos@ is a decreasing function on the interval 0 <
0 < m/12 (we really should be working in radians, after all), we know that sec @
is an increasing function on this interval. The same will be true of sec? 8, so the
maximum value of A will be on the right-most endpoint of the interval, # = 7,/12.
Students can see this by graphing the function A(6):

0.6
0.5 ///
0.4/
0.3
02
0.1

0.1 0.2 03 0.4 05

Thus the maximum area 1s achieved at 8 = /12 = 15°. This results in a
picture where one corner of the triangle is on a corner of the square and the triangle
is symmetric about a diagonal of the square.

Students who do use derivatives to solve this would get

ﬁ = ﬁseczﬂtanﬂ = @

de 4 2cos 0
Since 0 < 6 < 15°, we know that dA/df = 0 only when 6 = 0. This means that
the area formula has a critical point at § = 0. But this is just an endpoint of our
interval, so this means that the extreme values of the area A will happen at the
endpoints § = 0 and 6§ = 15 (since there are no critical points in between). The
question then is, which is a maximum and which is a minimum? We could take
the second derivative of A and determine the concavity of the critical point 6 = 0,
but taking such a derivative looks a little foreboding. Instead we could just check
the value of A when # = 0° and 8 = 15°. Fifteen degrees wins.

Students who do both of these handouts should be able to find a folding se-
quence for the maximal equilateral triangle. The pictures below serve as such a
folding sequence as well as a “proof without words” that it works. (First note that
0 = 15° in the left-most figure.) This folding sequence proof was developed by
Emily Gingras, Merrimack College class of 2002.
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Pedagogy. Students familiar with the classic “fenced-in pen along a side of a
barn” or “box folded out of a sheet of cardboard” calculus problems should see
right away that our maximum equilateral triangle problem should be solvable us-
ing similar methods. However, the model for our problem is very different from
those classic ones, and most students find it very challenging to set up the model
properly. The hard and subtle part is making sure that you can parameterize the
problem with a variable that tells you the triangle’s position in the square. The
best way to do this seems to be with an angle, and thus a formula for the trian-
gle’s area must be found in terms of this angle. In any case, this problem is at
the right level of what calculus students learning optimization problems should
be able to solve. But the value in this activity is for the students to sharpen their
mathematical modeling skills, so the instructor should resist giving any more hints
than those already given in the handout. Also, students should be encouraged to
explore whatever avenue they choose to give a correct proof, be it a numerical,
graphical, or analytical approach.

However, not all instructors will want to leave the details of such an activity
entirely open. The second version of the optimization handout is for those who
would like their students to see the proper procedure for such a problem and work
out the details themselves. The format and pacing of this handout follows a sug-
gestion by beta-tester Katarzyna Potocka of Ramapo College of New Jersey.

It can also be valuable to do this activity in a geometry course to emphasize
the interconnections between mathematical disciplines. Typically, math major un-
dergraduates in an upper-level geometry course will claim to have forgotten all of
calculus, making this all the more worthy to do.

Follow-up activity

If you think about how a maximal regular hexagon would be inscribed in a square,
as in the pictures below, and make horizontal and vertical half-way creases, you
can see that one quarter of the square is exactly like the crease pattern for the
maximal equilateral triangle. Therefore the folding method for the triangle can be
modified to give a maximal hexagon. The far right figure below abbreviates such
a method.

1/4

Of course, these questions can be asked for folding any regular polygon inside
a square, and while proving maximality gets more complicated, it's not beyond an
undergraduate’s means and can make good extended projects. Below are figures
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that show a way of proving the maximal hexagon case. Let # be the angle it makes
with the bottom edge of the square (whose side length is, again, 1) and let x be
the length of a side of the hexagon. The hexagon is made up of six equilateral
triangles, which makes it easy to compute the area of the hexagon: A = 6x (area
of one triangle)= 6(x/2)(\/3/2)x = (3v/3/2)x%. But we want to maximize this
with respect to 8.

(a) (b)

2

Figure (b) shows how we can do this. The diameter of the hexagon is 2x, and
if we assume that two opposite corners of the hexagon will be touching the left
and right sides of the square, then we can form a right triangle from one of these
corners (the left one, in the figure) with base of length 1 and hypothenuse one of
the diagonals (length 2x). Since the bottom of this triangle is parallel to the bottom
of the square, and the hypothenuse is parallel to the bottom of the hexagon, we
know that the base angle in this right triangle will be 6. Thus cosf = 1/2x, or
x = (1/2) sec . Thus the area of the hexagon is A = (31/3/8) sec? .

To maximize this, we need to find the range of 8 we need to consider. The sym-
metry of the hexagon shows us that 0° < 8 < 15 is all we need to consider. Like
the triangle case, the largest endpoint of this interval, 8 = 15°, gives the largest
area. This will make one of the diagonals of the hexagon lie along a diagonal of
the square.






Activity 2
DIVIDING A LENGTH INTO EQUAL
NTHS: FUJIMOTO APPROXIMATION

1/5+E

For courses: calculus, number theory, discrete dynamics,
modeling

Summary

Fujimoto’s approximation technique for folding a strip of paper (or the side of
a square) into 1/nths for n odd is presented. Numerous questions can then be
asked, such as “Why does it work?” and “What does the sequence of left and right
folds in this method tell us?” and “When do we get pinch marks at all multiples
of 1/n?”

Content

Simply teaching Fujimoto’s method and seeing how it works is a great, hands-on
demonstration of exponential decay, since the error in the initial guess decreases
by a power of 2 at every iteration. The connection to exponential functions and
analogy to things like Newton’s Method make this part, alone, good for a calculus
class.

To analyze Fujimoto’s method in more detail, a mathematical model of the
situation needs to be created. It turns out to be incredibly useful to think of the
strip as the interval [0,1] on the real number line and to consider the numbers
we are generating in their binary decimal representation. Folding the left or right
sides of the paper in half turns out to be equivalent to inserting either a 0 or a
1 at the beginning of the number’s binary decimal, which establishes a specific
mathematical meaning to the folds being made. Studying this can easily fit into
the context of a mathematical modeling or discrete dynamical systems class.

But there is also some interesting number theory at play here. The question of
knowing whether or not one will make pinch marks at every multiple of 1/n as
Fujimoto’s method is performed turns out to be equivalent to whether or not # is
prime and 2 is a primitive root mod n. So this paper folding activity makes a fun

applied number theory problem.

15
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Handouts

Two handouts are provided. The questions on the second handout progress from
one to the other, but they can also stand alone. (For example, Questions 4-6 could
be completely skipped in a number theory class, if desired.)

(1) Introduces Fujimoto’s approximation method and asks the general question
of why it works.

(2) Analyzes Fujimoto’s method. The first part is basic, the second is for dynam-
ical systems, and the third is for number theory.

Time commitment

Teaching the approximation method will take only 10 minutes, but students will
need another 20 at least to figure out why it works and try it for other values of n.
The time needed for the second handout parts will depend largely on the class in
which they're used.



HANDOUT

How Do You Divide a Strip into Nths?

Oftentimes in origami we are asked to fold the side of a square piece of paper
into an equal number of pieces. If the instructions say to fold it in half or into
fourths, then it’s easy to do. But if they ask for equal fifths, it’s a lot harder. Here
you'll learn a popular origami way of doing this, called Fujimoto’s approximation
method.

(1) Make a guess pinch where you think a 1/5 mark might be, say on the left
side of the paper.

(2) To the right of this guess pinch is ~ 4/5 of the paper. Pinch this side in half.

(3) Thatlast pinch is near the 3/5 mark. To the right of this is = 2/5 of the paper.
Pinch this right side in half.

(4) Now we have a 1/5 mark on the right. To the left of this is ~ 4/5. Pinch this
side in half.

(5) This gives a pinch nearby the 2/5 mark. Pinch the left side of this in half.
(6) This last pinch will be very close to the actual 1/5 mark!

1/5+E
W |[£ T g -

(3) | ldk":“ﬁ 4) H—Q—Fﬁd

Once you do this you can repeat the above steps starting with the last pinch
made, except this time make all your creases sharp and go all the way through
the paper. You should end up with very accurate 1 /5ths divisions of your paper.

Question: Why does this work?

Tip: If the strip is one unit length, then your first “guess pinch” can be thought of
as being at 1/5 & E on the x-axis, where E represents the error you have. In the
above picture, write in the x-position of the other pinch marks you made. What
would their coordinates be?

Explain: Seeing what you did in the tip, write, in a complete sentence or two, an
explanation of why Fujimoto’s approximation method works.



HANDOUT

Details of Fujimoto’s Approximation
Method

(1) Binary decimals?
Recall how our base 10 decimals work: We say that 1/8 = 0.125 because
1 1 2 5

8 10 102 103
If we were to write 1/8 as a base 2 decimal, we would use powers of 2 in the

denominators instead of powers of 10. So we'd get 1 = g + 0 + l We write

8§ 2 22 2%
this as 1/8 = (0.001)3.
Question 1: What is 1/5 written as a base 2 decimal?

Question 2: When we did Fujimoto’s approximation method to make 1/5ths,
what was the sequence of left and right folds that we made? What's the connection
between this and Question 1?

Question 3: Take a new strip of paper and use Fujimoto to divide it into equal
1/7ths. How is this different from the way 1/5ths worked? Find the base 2 decimal
for 1/7 and check your observations made in Question 2.
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(2) A discrete dynamics approach. .. (courtesy of Jim Tanton)
We've been assuming that our strip of paper lies on the x-axis with the left end

being at 0 and the right end at 1. Let’s define two functions on this interval [0, 1]:

x+1
5

X
T(](,\’) = E and T]l:,\’) =

Question 4: What do these two functions mean in terms of Fujimoto’s method?

Question 5: Let x € [0,1] be our initial guess in Fujimoto’s method for approxi-
mating 1/5ths. (So x will be something like 1/5 + E.) Write x as a binary decimal,
X = (0.1‘11'2."3 .- .)2.

What will T (x) be? How about T} (x)? Proofs?

Question 6: As we perform Fujimoto’s method on our initial guess x, we can
think of it as performing Ty and T; over and over again to x. When approximating
1/5ths, what happens to the binary decimal of x as we do this? Use this to prove
the observation that you made in Question 2.
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(3) A number theory question. .. (courtesy of Tamara Veenstra)

In Question 3 you were asked to use Fujimoto to approximate 1/7ths, and you
should have noticed that in doing so you do not make pinch marks at every mul-
tiple of 1/7, unlike when approximating 1/5ths. Indeed, only pinch marks at 1/7,
4/7,and 2/7 are made.

1/ 7Ii E 4/7+E /2
|l 3 |2
4
2/7+E /4
1/7+E/8
We can keep track of what's going on in a table, like the one 7ths | 7ths
to the right. The first line shows how many 1/7ths are on left right
the left of the first pinch and how many are on the right. The 1 6
second line does the same for the second pinch, and so on. 4 3
As you can see, the right side starts at 6 and comes back to 6 2 5
after only 3 lines. So it doesn’t make all 1/7ths pinch marks. 1 6
Assignment: Make similar tables for 1/5ths, 1/9ths, 1/11ths, and 1/19ths:
11ths | 11ths 119;:;5 13“11:’
5ths Sths 9ths ?ths left | right 1 _8—18
left | right left | right 1 10
1 4 1 8

Question 7: Think about what these tables are telling you in the number system
Z, (the integers mod n) under multiplication, where n is the number of divisions.
Then answer the question: How can we tell whether or not Fujimoto will give us
pinch marks at every multiple of 1/1 when approximating 1 /nths?
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SOLUTION AND PEDAGOGY

Why does Fujimoto work?

The ﬁgure below shows the numbers students should assign to the pinch marks
made when approximating 1 /5ths.

1/5+E 3/5+E /2
4/5+F /4 2/5+E/8
Q] dr—;"‘:*a 4) k—l—i——--b
1/5+E /16

sl T

The error term in each of these pinch marks is decreasing exponentially. In
other words, since lim,, .., E/2" = 0, the error will decrease with each fold at a
fast rate.

This can lead to a discussion on the nature of error when doing things in the
“real world"” (like origami). For example, the brilliance of Fujimoto’s method is
that it manages to work despite the inherent error that paper folding creates. No
crease can be made with perfect, mathematical precision. No matter how hard
we try, there will always be some error in our folds. So which is better, a mathe-
matically perfect method of folding 1/5ths, or Fujimoto’s approximation method?
The end result will have the same amount of error; the former will have the error
inherent in any fold, while the latter will have the initial error reduced to as close

to zero as one’s folding accuracy will allow. In fact, mathematically precise meth-
ods for folding 1/nths have a habit of compounding error with each fold, whereas
Fujimoto keeps reducing error with each fold. This is one reason why so many
origamists use Fujimoto’s method when folding odd divisions. Modeling the er-
ror in Fujimoto more accurately, to take into consideration human error as well,
might make an interesting student project.

There are other ways of proving that Fujimoto’s method works for certain val-
ues of n that do not rely on the suggestions of the handout. In fact, instructors
may decide to not use the handout and simply teach their class the method via a
hands-on demonstration. Then the proof can be left for students to do any way
they wish, and they often do not think of the simple error-reduction argument
given above.

One solution that my students developed proceeds as follows: Suppose that we
were to approximate 1/3rds. When we make our initial guess (near 1/3, assuming
our paper side is the interval [0, 1]), let the length of paper from 0 to the guess pinch
be a. Then the remainder of the paper is 1 — a, and after the second pinch this will
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be divided in half to give two segments of length (1 — a)/2. Then making the
third pinch would make a segment of length (1 — (1 —a)/2)/2. In other words,
this process is recursive; after the fourth pinch we’d have segments of length

1 P
2

2

Assuming that this continued fraction-like thing converges as we repeat this pro-
cess, we can let S = the limit of this fraction. Then S would satisfy the equation
S = (1-5)/2, which implies that S = 1/3. This method can also be used to solve

the 1/5ths version, although it's much more complicated.

Pedagogy. While the handout goes over all the steps of Fujimoto’s method, it can
be difficult for students to grasp what they are supposed to do. Demonstrating the
1/5ths example with them (they fold as you fold) is probably the best way to get
them comfortable with the method.

It's important to stress that the method should be repeated until the error seems
to have gone away. This can be seen on the paper when the pinch marks startbeing
made directly on top of previous pinches. That's the time to make the creases
sharp and go all the way across the paper. When done, “accordion pleat” the
paper into a zig-zag to demonstrate that yes, the paper is divided into equal 5ths
now.

After the students work through the first handout, or if some groups or indi-
viduals finish early, challenge them to use Fujimoto to make some other divisions,
such as 1/7ths or 1/9ths (or 1/3rds!). This tests whether or not they really under-
stand the method.

Handout 2: Binary decimals

In Question 1, we have that 1/5 is less than 1/2 and 1/4, but greater than 1/8.
So the first three digits in the binary decimal of 1/5 are (.001...);. After we take
out1/8, we have 1/5—1/8 = 3/40 = .075 left over. This is bigger than 1/16, so
the fourth digit is a 1. Then we have 3/40 — 1/16 = 1/80 = .0125 left. This is
smaller than 1/32 and 1/64. But wait, 1/80 = (1/5)(1/16) and we got 1/80 after
removing the 1/16 term from it. This means that if we factor out a 1/16 from our
1/80 remainder, we get 1/5 and we're back to where we started! So the binary
decimal will repeat after the first four digits: 1/5 = (0.0011),.

In Question 2, we know that in Fujimoto’s method to make 1/5ths, we had to
fold the right side twice and then the left side twice. So we folded the sequence
Right, Right, Left, Left. Students may be tempted to let Right = 0 and Left = 1,
getting the same sequence as in the binary decimal of 1/5, but there’s little justifi-
cation for that. It makes more logical sense to let Right = 1 and Left = 0, since we
should be thinking of the strip of paper being the interval [0, 1], so the right side
is at 1 and the left is at 0. Then we get that the left-right folding sequence is just
the repeated part of the binary decimal expansion written backwards. Actually
proving this comes in the second part of this handout.
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For Question 3, the difference with approximating 1/7ths is that you only get
pinch marks at the 1/7, 4/7, and 2/7 spots, whereas when approximating 1/5ths
we got pinch marks at every multiple of 1/5. This oddity gets explored in part 3 of
the handout. Nonetheless, 1/7 = (U.ﬁ}z, and sure enough, the folding sequence
for this is Right, Left, Left. This should catch any poorly-stated conjectures from
Question 2.

Pedagogy. Students (and indeed, many faculty) will not know or remember how
to convert a real number into a binary decimal. The example of 1/8 given in the
handout provides a sufficient summary, but it is not likely to be enough for stu-
dents to compute the binary decimal for 1/5. Still, instructors should let the stu-
dent groups try to figure out 1/5 in binary themselves a bit before, if needed,
providing hints. If everyone is lost, going over an example like 1/3 = ({]{ﬁ )2 for
the whole class might help.

Itis very likely that students will conjecture incorrectly in Question 2, but that’s
OK. Part of the learning process in formulating conjectures from data is under-
standing how to check yourself and recover when you get them wrong. But stu-
dents need to understand the importance of checking themselves, and Question 3
should give them the opportunity for that. Make sure that students actually revise
their conjectures after Question 3, not just tear them up and let them die.

Handout 2: Discrete dynamics

This material was gleaned from ideas of Jim Tanton [Tan01]. The functions Ty(x)
and T1(x) are doing exactly the same things as the left and right fold operations.
That is, if x € [0,1], then Ty(x) is the location of the crease pinch made when
folding the left side to x. (Just divide in half!) T;(x) is the location of the pinch
made when folding the right side to x. That takes care of Question 4.

In Question 5,  only mention the 1/5ths example so that the sequel in Question
6 will make more sense. The important realization is that if x = (0.i1i53...),, then

To(x) = (0.0iyizi3...)2 and Ty(x) = (0.1iyizi3...)2.

Proving these is pretty straight-forward: Since x = ¥, ; i /2", we have

1 & o= C
To(x) = 5 Zl 2%’:1 = );1 2””*"1 = (0.0i112i3...)2 and
1 1&1 R | L
Ti(x) = S+5) 5n =7+, o = (0.liiziz.. )2
2 2J'r=1 2 n=1

So in Question 6, we see that if the folding sequence in Fujimoto for 1/5ths
is RRLL repeated, then we’d be iterating To(To(T1(T1(x)))) over and over again.
Given our arbitrary initial guess x = (iyi2i3...),, we get that To(To(T, (T (x)))) =
(0.0011411515 . ..)5. This process will continue, giving us better and better approxi-
mations to 1/5.
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Thus we know why the left-right folding sequence gives us the digits in the bi-
nary decimal repeated part in reverse; it's because when composing these folding
operations we're adding a digit to the beginning of the binary decimal expansion,
and this reverses their order in the binary digits. It's the same thing as when stu-
dents get confused by the way function composition can look “backwards” to the
order in which one would state the operations verbally.

Pedagogy. The functions Ty and T brilliantly capture what the left and right
folds are doing. The instructor could even ask students to invent these functions
themselves; the left fold is just dividing the segment [0, x| in half, and the right
fold is dividing [x, 1] in half.

This part of the handoutis a good example of how abstract mathematical func-
tions can mean something very real—in this case something the student is holding
in her hands! So it is important that the students discover the relationship between
the Ty and Ty functions and the Fujimoto folds themselves. It’s not a difficult as-
sociation to make, but students need to mentally internalize it before proceeding
with the rest.

Discovering the result of Question 5 might be difficult. When in doubt, always
try examples. If students get stuck, ask them, “What if x = 1/2? Whatif x = 3/4?"
Those examples can get them thinking on the right track.

Proving the results of Question 5 requires familiarity with infinite sums and
a solid understanding of binary decimals. Students in a modeling or dynamics
(post-calculus) course should be able to handle this. (If not, then this will be very
good practice to sharpen their basic skills!)

Question 6 involves synthesizing what is learned from Questions 4 and 5. This
is an important part of the experimentation-conjecture-proof process. Make sure
they write down their conclusions clearly in complete sentences.

Handout 2: Number theory

This part of the handout grew from a solution to the “What pinch marks will 1
get?” question by Tamara Veenstra. The correct values for the tables are below:

11ths | 11ths
left | right
10

9ths | 9ths

5ths | Sths left | right

left | right
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(19ths is left for you.) If we read these tables backwards, from the bottom up, it’s
hard to miss the appearance of taking 2 to greater and greater powers in Z,;, where
1 is the number of divisions we're making in Fujimoto. This makes sense too—
once you make a fold in Fujimoto that results in a number of divisions equal to a
power of 2 on one side of the pinch, then you'll use that side for the rest until you
get to either 1/n or (n — 1) /n. So, if the consecutive powers of 2 in Z,; generates all
the numbers from 1 to n — 1, then we’ll get pinch marks at every multiple of 1/n.
In other words, the condition we're looking for is if 2 generates the set Z,, \\ {0}
under multiplication. The most concise way of saying this, which any number
theory student should try for, is that 2 is a primitive root of Z,,.

Depending on the amount of class time that you devote to this, or on the level
of your students, an informal explanation like that given above may be appropri-
ate. But it can be made much more rigorous, as follows.

Let1/n = (0.i1i3 . . . ix)2. This means that

oo

1 3 IS S S fzk iy + 252y 4+ - 420,
n = 2k+1 0 k2 2jk+k = 2ik+k :
Let a = 251, 4+ 28-2j; 4 ... 4 207, the numerator term of the last summation.
Then notice that a = (ijiy...i)2, i.e., the number that we get from the repeating
part of 1/n considered as an integer base 2. Also notice that a is not dependent

on j. Thus,

1 | a e 1
- = a — = — e
a 1 a 2k a

K11 2k T okpk 1 k71

We've written 1/n as a fraction with one less than a power of two in the denomi-
nator. This means that

an =251 or, in other words, k=1 (mod n).

So 2 is in the group of units U(Z, ). Also, suppose that k is not the smallest positive
integer satisfying 2 = 1 (mod n). Then we could write 1/n = b/ (2™ — 1) for some
positive integers b and m < k. But then we could do the above calculations back-
wards and get that 1/n has a different binary decimal expansion with a shorter
repeating part. Assuming k already gave us the shortest repeating decimal, this
won't happen. So k must be the smallest positive integer with 2¥ =1 (mod n).

We can now interpret all this as follows: Approximating 1/n = (0.i112 ... 1;)2
using Fujimoto will generate pinch marks at all multiples of 1/n if and only if
k = n — 1, which will be true if and only if the powers of 2 generate all of Z,, '\ {0}.
In other words, n must be prime and 2 must be a primitive root modulo n.
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Pedagogy. Depending on when this is done in a number theory class, students
will have mixed success ﬁnding the best way to state their findings. But the pattern
that the tables reveal should be clear. This provides a good test for how competent
the students are becoming at number-theoretic pattern-matching. Non-number
theory courses can have fun with this activity as well, but the students will need
to be familiar with Z,. (And they're not likely to state anything about primitive
roots.)

One easy mistaken conjecture for students to make is that we'll get all the pinch
marks if n is prime. Such thinking usually goes like this: if powers of 2 do not
generate all of Z,, \, {0}, then they’ll generate a subgroup, and the only time when
Z,, won't have any subgroups is when n is prime. This is flawed, of course, but
don't be surprised if you see students thinking in this way.

Further studies

Fujimoto describes his approximation method in the extremely rare Japanese book
[Fuj82]. He also used this technique as a way to approximate odd angle divisions.
For a different look at this type of approximation method and other tie-ins to num-
ber theory, see the work of Hilton and Pedersen, such as [Hil97].



Activity 3
DIVIDING A LENGTH INTO EQUAL
NTHS EXACTLY

(2) (3) S

-

For courses: geometry, precalculus

Summary

Students are asked to come up with ways to, say, fold the side of a square piece
of paper into perfect 3rds or 5ths or some other odd division. The aim here is to
develop exact methods, not approximations.

After students have tried this for a while, or perhaps in a later class, give them
the handout. This shows an origami routine that the students will discover pro-
duces a landmark for folding perfect 1/3rds. The students are then asked to gen-
eralize this method.

Content

This activity is mostly geometry, although it’s a problem that can be solved using
both synthetic and analytic methods. In fact, if the problem is solved analytically,
nothing more than finding equations of lines and their point of intersection is used,
making this a nice hands-on activity for a precalculus class.

Handouts

There are two handouts that take two different approaches to the same task: fold-
ing a square piece of paper into perfect thirds. The first one shows students the
folding method and challenges them to discover what it is doing. The second one
explains what the method is doing and challenges them to prove it.

Both of these handouts can be motivated by asking students beforehand to try
coming up with their own methods of folding thirds exactly.

Time commitment

Plan on reserving at least 30 minutes of class time for this activity, which includes
folding time, student work time, and discussion afterwards.

27



HANDOUT

What'’s This Fold Doing?

Below are some origami instructions. Take a square and make creases by folding
it in half vertically and folding one diagonal, as shown. Then make a crease that
connects the midpoint of the top edge and the bottom right-hand corner.

| Vd

L——A \

/

Question 1: Find the coordinates of the point P, where the diagonal creases meet.
(Assume that the lower left corner is the origin and that the square has side length 1.)

Question 2: Why is this interesting? What could this be used for?

Question 3: How could you generalize this method, say, to make perfect 5ths or

nths (for n odd)?



HANDOUT

Folding Perfect Thirds

It is easy to fold the side of a square into halves, or fourths, or eighths, etc. But
folding odd divisions, like thirds, exactly is more difficult. The below procedure
is one was to fold thirds.

(1) ) 3) A3

A [

e

Question 1: Prove that this method actually works.

Question 2: How could you generalize this method, say, to make perfect 5ths or
nths (for n odd)?
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SOLUTION AND PEDAGOGY

Since the two handouts are similar, we’ll focus on solutions for the first one.

Question 1: Synthetic approach

Assume that the square has side length one and consider the labeling in the figure
below. Denote the coordinates of P with (x, x). Then AE has length x, so EB has
length 1 — x. Also, EP has length x.

A Dl E B

Then ABDC and ABEP are similar. Thus |CD|/|PE| = |BD|/|BE|, which

becomes

1: 1/2 = 2-2x=x :‘;x:g
x 1—-x 3

This could also be proven by using the similar triangles AABP and ACPF.

Question 1: Analytic approach
Assume that the square sits in the xy-plane, with A at the origin and B at (1, 0).

Then P lies on the intersection of two lines: y = xand y —1 = —2(x —1/2).
Combining these to find their intersection givesx—1 = —2x+1,0r 3x = 2, or
x=2/3.

Obviously, the answer to Question 2 is that this can be used to fold the square
into thirds exactly. Try it!

Question 3

The picture below shows how to generalize this method to fold the side of a square
into n equal divisions, where n is odd. Instead of using the 1/2 vertical line, make
avertical lineat x = (n —2)/(n — 1) (or 1/(n — 1) away from the right side).

1/(m-1)

H
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Finding this line should not be too hard, since n — 1 is an even number (since n
is odd). (If n — 1 equals something like 6, then you'd have to find a 1/3 point first
and then fold this in half to get a 1/6 mark. So in a sense this method is recursive.)

The same approaches to Question 1 will give that the point at which the two
diagonal creases in this general case meet is ((n — 1)/n, (n — 1) /1), which can
then be used to fold the paper into equal nths.

Pedagogy

As mentioned previously, students appreciate learning methods of folding per-
fect thirds a lot more when they've spent some time themselves trying to develop
them. There are many other methods for doing this kind of thing (some of which
will be described at the end of this section), and if students come up with methods
of their own then they should be studied and proven. In fact, if someone comes
up with the method provided in the handout, then that’s the best context in which
to investigate proofs and generalizations. Thus, if the students’ own explorations
go well, there may be no need for the handout.

The first handout may seem more advanced, but I've been surprised at how
able some students are at figuring out what the method is doing. Nonetheless, the
first handout does set students up for an analytic proof, since finding the coordi-
nates of P is most easily done by finding the equations of the crease lines.

The second handout places more emphasis on developing proof-building skills.
Most students come up with the similar triangles proof, but the analytic approach
can be a very useful one in a variety of geometry problems and uses nothing more
than basic precalculus material. In a geometry course students are often delighted
to learn that they can solve some problems using such simple techniques. So if
all groups develop synthetic geometry proofs, make sure to drop some hints to
students who finish early about thinking of the paper as being in the xy-plane, so
that equations of the lines can be found. Usually this is all that needs to be told for
students to run with this and develop the analytical proof described above. (And
note that the second handout gives no hints about an analytic proof, unlike the
first handout.)

The general method is also easy for students to figure out, if they first try a sim-
ple case. Students who are stumped on how to generalize should be encouraged
to try an example, like folding 1/5ths. To make 1/5ths with this method requires
only using a vertical line at the x = 3/4 position instead of thel/2 position. This
is pretty straightforward for students to figure out and can lead to the complete
generalization.

Other methods

As mentioned previously, there are many other methods for folcling 1/3rds, 1/5ths,
or general 1/nths. A few will be shown here without proof.

Below is shown a way to achieve 1/3rds that follows naturally from one of the
methods for folding a 30°-60°-90° triangle (as seen in Activity 1). This does not
generalize to other 1/nths, however.
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1/3

A different general method, shown below, was invented by Haobin Yu, a stu-
dent at the 2000 Hampshire College Summer Studies in Mathematics. It uses the
premise, again, that divisions of 1/2n should be possible, and from this we get an
odd division 1/(2n + 1). It can be proven using similar triangles or the analytic
method used previously.

)1/(2n+1)

More methods for folding exact divisions can be found via web searches, in
particular see [Hat05] and [Lan04-1]. Any of these methods could be assigned for
homework exercises or extra projects.



Activity 4
FOLDING A PARABOLA

For courses: geometry, precalculus, calculus, abstract algebra,
modeling

Summary

Students are led though an exercise of applying a basic origami move (fold a point
to a line, which is a required move in Activity 1) over and over again to produce
crease lines that seem to be tangents to a parabola. Students are asked to prove
that this is, indeed, a parabola.

Follow-up activities: Can we fold an ellipse or hyperbola in similar ways?
What does this tell us about the field extension of the rationals that origami con-
structions generates?

Content

While this is clearly a geometric construction exercise, in the sense that it’s an
opener to a bigger question of what geometric constructions are possible via ori-
gami as opposed to, say, straightedge and compass, there’s a lot more going on
here as well. Basic facts about parabolas are reinforced, and the whole proof can
be done using only logic and precalculus techniques. On the other hand, providing
a rigorous proof does involve creating a detailed model of the folding process in
this activity, making this a good example of geometric modeling. Furthermore,
a more elegant proof can be made using envelopes of curves, a topic sometimes
encountered in differential or algebraic geometry courses. Thus there is a wide
range of courses in which this activity can be useful.

This activity also offers a chance to illustrate, by example, the connection be-
tween visual geometry and solving algebraic equations. That is, one of the punch-
lines of this activity is being able to say, “Doing this origami fold is equivalent
to solving a quadratic equation.” This kind of connection between geometry and
algebra is an important concept in higher mathematics.

33
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Handouts

There are two handouts for this activity.

(1) Leads students through the parabola-folding activity and asks them to prove
it. The second page leads students through modeling this kind of folding to
a more analytic proof.

(2) This is for instructors who want their students to explore this exercise on
Geometer’s Sketchpad. It is meant to supplement the first handout, not re-
place it.



HANDOUT

Exploring a Basic Origami Move

Origami books display many different folding moves that can be made with paper.
One common move, especially in geometric foldi_ng, is the followi_ng:
Given two points p; and p; and a line L, fold p; onto L so that the
resulting crease line passes through py.
Let’s explore this basic origami operation by seeing exactly what is happening
when we fold a point to a line.
Activity: Take a sheet of regular writing paper, and let one side of it be the line L.

Choose a point p somewhere on the paper, perhaps like below. Your task is to fold
p onto L over and over again.

It is easier, actually, to fold L to p, by bending the paper until L touches p
and then ﬂattening the crease. Do this many times—as many as you can stand!—
choosing different points p’ where p lands on L.

Question 1: Describe, as clearly as you can, exactly what you see happening. What
are the crease lines forming? How does your choice of the point p and the line L
fit into this? Prove it.
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Now we'll try to find the equation for the curve you discovered.

First, let’s define where things lie on the xy-plane. Let the point p = (0,1) and
let L be the line y = —1. Now suppose that we fold p to a point p’ = (f, —1) on the
line L, where t can be any number.

Question 2: What is the relationship between A
the line segment pp’ and the crease line?
What is the slope of the crease line?
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Question 3: Find an equation for the crease line. (Write it in terms of x and v,
although it will have the t variable in it as well.)

Question 4: Your answer to Question 3 should give you a parameterized family
of lines. That is, for each value of t that you plug in, you'll get a different crease
line. For a fixed value of f, find the point on the crease line that is tangent to your

curve from Question 1.

Question 5: Now find the equation for the curve from Question 1.
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Origami on Geometer’s Sketchpad

In this activity we’'ll use Geometer’s Sketchpad to explore a basic origami move:

Given two points p; and p; and a line L, fold p; onto L so that the
resulting crease line passes through p;.

We'll explore this basic origami operation by modeling on GSP what happens
when we fold a point to a line. We’'ll make use ofa key observation:

When we fold a point p to a point p’, the crease line we make will be

the of the line segment
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Instructions: Open a new worksheet in GSP.
(1) Draw a line and label it L.
(2) Make a point not on L, call it p.
(3) Make a point on L, call it p.

Then, with the key observation above, use GSP tools to draw the crease line
made when folding p to p’.

Once you've done this, select the crease line and turn on Trace Line under the
Display menu. Then you can move p" back and forth across L and make many
different crease lines. In this way you can make GSP do the “folding” for you!
(Plus, it looks cool.)

Follow-up: What happens if we use a circle instead of the line L?
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SOLUTION AND PEDAGOGY

First Handout

The history of this folding exercise goes pretty far back. The oldest reference that
I've found is a 1924 Monthly paper by C. A. Rupp [Rup24], where the author indi-
cates that teachers have been using this activity for quite some time. However it
never fails to surprise students (and faculty) that the outline of a parabola seems
to form when repeatedly folding a point p onto a line L. Actually, the crease lines
seem to be tangent to the parabola with focus p and directrix L. (See figure (a)
below.)

(b) (©)

Question 1. If students remember (or are reminded) about the definitions of fo-
cus and directrix for a parabola, then they might be able to construct the concep-
tual proof outlined in figures (b) and (c) above. The idea is that of we fold p onto
L, then some part of the paper will fold up part of L to meet p. If we draw a line,
using a very thick black marker, on this folded part starting at p and traveling
on a line perpendicular to the image of L (as in figure (b) above), then this line
will run all the way to the folded edge of the paper. If we unfold the paper, our
thick marker will have bled through the paper, resulting in figure (c) above. This
demonstrates how the point x, where our marker line hit the crease line, is equidis-
tant from the point p and the line L. (Recall that the distance from a point to a line
is the perpendicular distance.) Furthermore, this point x is the only point on the
crease line that will have this property. (If we try this with some other point on
the line, when we refold the crease we see that there’s no way the distances can be
equal.) Since one definition of a parabola is the set (i.e., locus) of all points that are
equidistant from a point (the focus) and a line (the directrix), we have just proven
that the crease line will be tangent to the parabola with focus p and directrix L.
Since our choice for where to fold p to L was arbitrary, this will hold for all our
crease lines.

Question 2. When we fold p onto p/, the crease line formed will be the perpen-
dicular bisector of the line segment pp’. This is fairly obvious, but some students
may want to prove it rigorously. It’s really the same concept at play as the elemen-
tary geometry fact that the set of all points which are equidistant from point p and
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p' is the perpendicular bisector of p_'r»"’ Since the fold places one side of the paper
onto the other, and p goes to p', it’s clear that all points on the crease line will be
equidistant from p and p’.

The slope of the segment pp’ is —2/, so the slope of our crease line will be t /2.

Question 3. The midpoint of pp’ is (t/2,0), and this point will be on our crease
line. Thus the equation of our crease line when folding p = (0,1) onto (f, —1)

will be
t 2

1—£(r—£):> =-x—-—
y=3%=3 y=3*"7

Question 4. This question “gives away” the fact that our crease lines are actually
tangents to a curve, but students should have figured this out in Question 1. They
should also have either conjectured or proven that this curve is a parabola by now.
With this piece of information, we can see that if we draw a vertical line from
p’ = (t,—1) to the crease line at point, say, g, then folding along the crease line
will show that the segments qp’ and gp have the same length. Thus the crease line
is tangent at point g to the parabola with focus p and directrix y = —1. Since g
is on the crease line and we have the equation for this crease line, we see that the
coordinates for g are (t,t2/4).

Question 5. There is more than one way to do this part, but Question 4 should
lead students to the easiest solution. Notice that the point of tangency (t, t2/4) is
actually a parameterization of the parabola y = x2/4, and students can see this by
merely letting x = f (which makes sense since t is the x-coordinate of the point of
tangency).

Notice that this solution does assume that our curve is a parabola. However,
the work in Question 4 can be extended slightly to provide a proof that the curve
is, indeed, a parabola. There are other ways to derive the equation of the curve,
however.

Quadratic formula way. Observant students might have noticed that this basic
folding operation (as stated on the first page of the handout) does not always
work. That is, for a fixed p; and fixed L, there are choices of p, that would make
the operation impossible to do. This can be seen in our folding exercise in that if
we chose p, to be in the convex hull of the parabola, then no crease formed by
folding p onto L could possibly go through ps.

This can be used to our advantage: If we take our parameterized family of
crease lines and solve for t, then we would get a formula that would tell us what
value of t we should use to make sure that the crease passes through (x, y). Watch
what happens when we do this:

2ot x/244/(x/2)2 —y
7 Xty =0=t= 1/2 '
This gives a real number fort only when x2/4 — y = 0. So the inequality y < x2/4
represents all points in the plane that can be hit by a crease line, and the region
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given by y > x?/4 contains all points that won't be hit by a crease line. The
boundary of these two regions is our curve, the parabola y = x2/4.

Another “assume it's a parabola” way. This proof is given by Smith in [Smi03].
Let (x, i) be the point on the crease line that is tangent to the parabola. Then notice
that we must have x = f, where p’ = (t,—1) is the point on L that we fold p to.
This follows from the definition of the parabola, although the illustration below
makes it more clear.

We know that the slope of our crease line is £ /2, but this should equal the slope
between points (x,y) and (t/2,0) (the midpoint of pp’). So,
t  y—0 x Y

> x—t2 2 xn2 YT

Envelope way. (This is presented in [Huz89].) A more advanced class could look
at the parameterized family of lines and realize that all we need to do is take the
envelope of this family. (See [Cox05].) Specifically, if F(x,y,t) = 0 is a parameter-
ized family of curves, then the envelope of this family (a curve that is tangential to
members of the family) is given by solving the set of equations

F(x,y,t) = 0and %F(x,y, t) = 0.

In our case, we have (d/dt)F(x,y,t) = x/2 —t/2 = 0, or x = t. Plugging this into
the line equation, we gety = x2/2 — x2/4, or y= x2 /4, which is our parabola.

Pedagogy

As students do the folding exercise, make sure they make enough creases, for
otherwise they won't be able to see the parabola. It can also be useful to do the
Geometer’s Sketchpad activity (see below) in between Questions 1 and 2, since
simulating this on GSP helps reinforce the geometric relationships between the
point p, the line L, the crease line, and the parabola. But the best way to help
students develop the conceptual proof for Question 1 is for them to play with
the folded paper. However, instructors will most definitely have to go over the
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focus-directrix definition of a parabola with the class. Most students will have
forgotten this, and it's unclear how much this is emphasized in the high school
math curriculum nowadays.

Questions 2 and 3 shouldn’t give students too much trouble, and they rein-
force the concepts of slope, perpendicular lines, and the point-slope formula for
a line. However, the answer to Question 3 is a family of lines parameterized by
the variable t. Students often have trouble wrapping their mind around parame-
terizations, and the presence of the t variable will challenge their understanding
of the finer points of this problem. It is important that they understand that the
crease line is an equation in terms of x and y, like normal, but parameterized by t.
The final equation for the parabola is in terms of x and y and should be more
familiar-looking to students.

Questions 4 and 5 are conceptually tough. The idea is for students to find the
point of tangency on the crease line, which then makes finding the equation of the
parabola a snap. If this doesn’t work, however, instructors should keep the other
proofs in mind and offer appropriate tips as students wrestle with Question 5.

The proof that uses the discriminant in the quadratic formula to determine
which region of the plane cannot contain any crease lines is the most illustrative of
what's really going on in this origami operation, so I recommend going over this
approach with students. (Students may also be intrigued to see such an unusual
application of the quadratic formula!) This could easily become a homework or
project assignment, as it might be too much to expect students to digest the folding
activity and develop a proof for Questions 4 and 5 in only one class period.

This activity also drives home the point that a conic sections are the locus of
points satisfying a certain condition. Seeing such a hands-on illustration of this
can be especially helpful for pre-service mathematics teachers, since parabolas,
ellipses, and hyperbolas are still a part of the high school algebra curriculum.

The higher-level punchline concept for this activity is that, “Origami can solve
quadratic (second degree) equations.” Students who fully grasp and understand
this statement will leave this exercise with a lot more mathematical maturity than
they brought into it. The idea that what we do in one field of math (like the geome-
try of paper folding) can be identical to something completely different-looking in
another field of math (solving quadratic equations) is a theme that runs through-
out all of mathematics. Plus, this situation is very analogous to the classic prob-
lem of trisecting an angle using straightedge and compass, where we learn that
such a general construction is impossible because the tools of straightedge and
compass can only solve quadratic equations, and angle trisection requires solving
cubic equations. The origami parabola activity is actually a first step in seeing that
origami not only can construct anything that straightedge and compass can but
also can do more. This topic is pursued more in the two activities following this
one.

However, proving that our activity produced a parabola does not prove that
all quadratic equations can be solved via origami. It is good evidence, however,
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and it gives us everything we need to make a more general argument. I present
this outline here because using the activity to launch a discussion on these topics,
especially in an abstract algebra class where geometric constructions are covered,
will often result in a student asking, “But how do you know that any quadratic
equation or parabola can be solved by origami?” The following makes a convine-
ing argument, and was gleaned from Alperin’s more in-depth paper on the topic
[Alp0OO].

Proving that origami can solve general quadratic equations. The quadratic
formula tells us that if you know how to perform the operations of addition, sub-
traction, multiplication, division, and square roots, then you know how to find the
roots of any quadratic equation. Algebraically, this would be proving that the set
of all points in the plane that can be constructed via origami contains the smallest
subfield that is closed under square roots.!

Assuming that our paper is infinite (just to make our life easier) and that we
start off with, say, line segments of unit length on the x- and y-axes, it is straightfor-
ward to see that addition, subtraction, multiplication, and division by rationals can
be handled by origami. Adding and subtracting lengths of line segments is easy to
do via folding. Division is a bit trickier, but the Dividing a Length into Equal nths
Exactly activity in this book proves that this kind of thing can be done. Multiplica-
tion by rationals is then just an extension of addition and division. Taking square
roots is the only operation that may require the power of the parabola-inducing
origami operation that we’ve been studying.

Suppose that r is a number (or rather, length of a line segment) that we have
already constructed by folding, and we want to construct /r somehow. We will
use the construction setup described above, where we let p1 = (0, 1) be our focus
and L the line y = —1 be our directrix. We will let our second point be p; =
(0, —r/4) and fold a crease that places p; onto L (at the point p} = (t, —1)) while
making the crease go through p,. We already know that the equation of our crease
lineisy = (t/2)x — t2/4, and this line has to go through the point (0, —r/4).
Plugging this point into the line, we get —r/4 = —12/4,0ort = v'*. Thus the place
where p; lands on L will give us a coordinate of the desired value. Bingo.

Second Handout (solution and pedagogy)

Simulating this activity on Geometer’s Sketchpad (GSP) should be very straight-
forward for anyone familiar with the software. If you do not have GSP available
for your students, I highly recommend KSEG, a freeware program that is similar
in functionality to GSP. See [Bar05].

The handout leaves things “blank” in order to make the students think about
what they’re doing as they do it. You should feel free to just tell students to model
the folding activity on GSP without the handout as a guide if you have the time

Technically, we would want to consider the paper to be the complex plane C if we were doing a
strict algebraic approach. Again, see [Alp00].
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for students to figure it out for themselves (which will make them more likely to
understand it all). The missing parts on the handout are to

(1) select points p and p” at the same time and use the Line Segment command,
(2) select the line segment just made and use the Construct Midpoint command,

(3) select the midpoint and the segment at the same time, and use the Perpen-
dicular Line command.

That perpendicular line is the crease line. With only this line selected, turn
on the Trace Line feature and then move the point p’ back and forth along L.
Something like the below picture should result.

The fun thing about GSP is that as you construct these points and lines, they
remain linked. So students should explore moving the point p around and seeing
how this changes the parabola.

Even better is to let students use the Locus command: Select the crease line
and the point p’ and then under the Command menu choose Locus. This does the
same thing as the trace command, but since GSP does it for you, you can then grab
the point p, move it around, and all the crease lines will move as well.

The follow-up activity is a must. The construction in GSP is the same as for
the parabola, but start with a circle instead of a line L. The resulting picture will
depend entirely on whether or not the students put the point p’ inside or outside
the circle. Be sure to listen for exclamations of excitement and awe as students
develop pictures such as those below.
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If p’ is inside the circle, we get an ellipse with foci p and the center of the circle.
If p’ is outside the circle we get a hyperbola with the same foci. Ata higher concept
level, this makes perfect sense—if we transform the center of the circle to infinity,
the circle would turn into a line and we’d be back in the parabola case.

Some have commented, like [Sch96], that even though it's cool, quick, and
easy to make such conic sections in GSP, nothing compares to letting the students
discover this themselves first by paper folding. For the ellipse and hyperbola,
students would have to use a compass or circular drawing tool to draw a circle on
the paper and mark the center. Then a random point p can be chosen, and students
can begin to select points p’ on the circle to fold to p, unfold, and repeat.

Proving that folding with a circle gives an ellipse or hyperbola is a bit more
involved that the parabola case. I'll present here a conceptual proof of the elliptic
case. An analytic method and the hyperbola case can be found in [Smi03].

Let O denote the center of the circle, p be inside the circle, and p’ be any point

on the circle. Then, our crease will be the perpendicular bisector of pp’, and let x
be the intersection point of the crease line and the segment O—p’ Now, recall that
an ellipse is determined by two foci and a fixed length I, where the sum of the
distances between any point on the ellipse and the two foci is always [.

Claim: The crease line is tangent to the ellipse whose foci are O and p and whose
fixed length is the radius of the circle.

Proof: First we show that the crease line contains a point on this ellipse. Since the
radius of the circle equals Ox + xp" and px = xp’ (by the folding), we know that
Ox + px = the radius of the circle, which means that the point x is on the ellipse.
Figure (a) below illustrates this.

Now we want to show that no other point on the crease line can be on the
ellipse, thus proving tangency. Let u be another point on the crease line, and sup-
pose that u is on the ellipse. Let Ov be the radius line that contains u. (See figure
(b) above.) Since u is on the ellipse, we have that up = uv. (Yes, this is clearly
not true in the figure, but keep reading.) But since u is on the crease made from
folding p’ to p, we know that up = up’ as well, so uv = up’. Since Ou + up’ =
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the radius of the circle, which equals Op’, we must have that u lies on the line Op’.
This means that u = x, and we have that x is the only point on the crease line that
is tangent to the ellipse. U

Final thoughts

You may have noticed that there is a lot of material that can be explored in this
activity. Indeed, there’s more than what has been touched upon here.

As one last example, in [Smi03] Scott G. Smith mentions how the parabola fold-
ing activity gives a nice “proof by origami” that parabolic mirrors have interesting
reflective properties. In the figure below, where p is folded onto p’ so that x is the
point where the crease line is tangent to the parabola, notice that congruent trian-
gles and vertical angles give us that angles a and 6 are equal. Thus we can think
of & as the angle of incidence and @ as the angle of reflection (or vice versa) of light
or sound waves either coming into the parabola and meeting at p or emanating
from p and reflecting off the parabola in parallel directions. This is why parabolic
surfaces are used for spotlights, stereo speakers, and satellite dishes.

Of course, this can be proven just from the basic properties of the parabola. But
since origami gives us everything that we need for this immediately, it becomes
natural to bring this up during a discussion of the parabola folding activity.

How much any of this material can be explored in your class will entirely de-
pend on how much time can be afforded to it. But the potential for homework
problems or extended student projects is great here. What’s more, the following
two activities explore the topic of origami geometric constructions even further.






Activity 5
CAN ORIGAMI TRISECT AN
ANGLE?

For courses: geometry, abstract algebra

Summary

Students are shown a paper folding routine that seems to trisect any acute angle.
Is it for real? A proof or refutation is needed.

Content
The heart of this activity is straightforward geometry. However, the implications
from the fact that origami can trisect angles are, for one, that origami is a more
powerful construction method than straightedge and compass. This means that
the field of origami constructible numbers is larger than the smallest subfield of C
closed under square roots. (See the previous activity for a lead-in to this.)

This activity can be especially captivating in the context of a discussion on the
classic Greek problems of trisecting an angle and doubling the cube.

Handout

There is only one handout, which leads students through the angle trisection
method and asks them to figure out what it is doing and how to prove it.

Time commitment

The folding part of the activity will take 10-20 minutes of class time, but proving it
will take much longer for the students to figure out themselves. Feel free to assign
the actual proof for homework.
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HANDOUT

What's This Doing?

Take a square piece of paper and fold a line from the lower-left corner going up at
some angle, 6. Then fold the paper in half from top to bottom and unfold. Then
fold the bottom 1/4 crease line. That should give you something like the left figure
below.
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Then do the operation in the middle figure: Make a fold that places point p;
onto line L; and at the same time places point p> onto line L. You will have to
curl the paper over, line up the points, and then flatten.

Lastly, with the flap folded, extend the L; crease line shown in the right-most
figure. Call this crease line L.

Question 1: Unfold everything. Prove that we if we extend L3 then it will hit the
lower-left corner, p;.

Question 2: What is crease line L3 in relation to the other lines in the paper? Can
you prove it, or is this just a coincidence?
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SOLUTION AND PEDAGOGY

Handout: Angle trisection

Yes, this routine is showing how one can trisect an acute angle via paper folding.
After doing the routine, unfolding everything, and extending L3 to reach the point
p1, fold the bottom edge of the paper up to L3 (thus bisecting the angle between
L3 and the bottom side of the square). Then, depending on how accurate the folds
were, one can see that angle 6 has been trisected.

P1

Question 1. The above picture shows why p; lies on line L3. If we let x be the left
endpoint of the segment of L3 formed by the folding, we see that the segment px
is the same as xC when the paper is folded. The angle between xC and L3 on the
folded paper is thus the same as both angles shown around the point x above on
the unfolded paper. Thus the vertical angles around x are equal, and p;x forms a
straight line with L.

//L3 LZ

V L,
D

Question 2. There are several ways to prove that this routine is a valid angle
trisection. The most simple uses the above figures. We let points A, B, and C be
the images of the three points on the left side of the paper after the fold. We also
drop a perpendicular from C to meet the bottom edge at D. Then by the definition
of these points (as in the above figure, left), we have AB = BC = CD. Looking
at the unfolded paper, we also have that pyB L AC. Thus AABp,, ABCp,, and
ACDp are congruent right triangles. Thus they trisect angle 6 at p;.

One can find this angle trisection referenced a number of places on the web,
but most of those sites use a different proof that involves the figure below.

D P1
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Here A, B, and C are as in the previous proof, and we label the points on the
left side of the paper p; (as before), F, and E. These two triples of points and
the lines connecting them are mirror-symmetric to each other about the crease
line. So we have that AB = BC and p;B L AC. This is enough to show us
that Apy AC is an isosceles triangle. (If further proof is needed, then notice that
Ap1AC is the reflection of /Ap; CE under the folding, which is certainly isosceles.)
Thus we have that ZAp1B = ZBp;C, and since L is parallel to the bottom edge,
ZFCpy = ZCpx. Thus 0 was trisected.

Pedagogy

This angle trisection method was developed by H. Abe and published in 1980
[Abe80]. There are others, like Jacques Justin’s [Bri84]. All have as their funda-
mental origami “move” the following:

Given two points p1 and p; and two lines L1 and L, we can make a
crease that simultaneously places p; onto Ly and p; onto L;.

This turns out to be the most complicated single-fold basic origami operation
possible, and it’s what separates origami constructions from straightedge and
compass constructions. This operation will be studied in more detail in the next
activity.

This activity won't have any impact on the students without some discussion
about the controversial history of angle trisections and cube-doublings in mathe-
matics. From the time of the ancient Greeks to the mid-1800s people were trying to
develop a means by which to trisect an arbitrary angle with only the tools of an un-
marked straightedge and a compass. (Note that people as far back as Archimedes
knew that if we used a marked straightedge, we could achieve angle trisections.
See [Mar98].) Then mathematicians finally proved that angle trisection was im-
possible with these tools, and in general one can use Galois Theory to prove that
an unmarked straightedge and compass cannot solve cubic equations in general.

Now, the mathematical world is full of “false proofs” that straightedge and
compass can trisect angles. It is not uncommon for geometry experts to receive
letters and emails from amateur mathematicians who claim to have “solved” the
problem of angle trisection by the Greek methods. Of course, all such attempts
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contain some flaw. Often they are very clever and seem to come very close to tri-
secting the angle. But actually doing it perfectly for all angles with straightedge
and compass is impossible. Thus, no student of mathematics should accept an
origami angle trisection without a rigorous proof that it works!

Without an appreciation of this, these activities will seem rather pointless. But
in the context of a geometry, algebra, or history of math class, this can be a real eye-
opener as well as serve as a way to solidify exactly what the controversy about
angle trisections was for all those years. That is, seeing an easy way how one
could trisect angles with origami helps one understand why it couldn’t be done
with other tools. Such an understanding would be achieved more readily using
the next activity on cubic equations in addition to this one.

Since there is more than one way to prove the trisection, you should let stu-
dents play with trying to prove it on there own for a good amount of time before
giving any hints. It often doesn't occur to students that they should draw the im-
age of the left side of the paper (line AC in the figures), so this can be a gentle
suggestion that doesn’t give everything away. In fact, any proof will be very diffi-
cult to develop without an understanding of how when we fold paper, part of the
paper is reflected about the crease line, and thus lengths and angles are preserved
under this transformation. That “creases are reflections” is a fundamental ingredi-
ent of these proofs, and discussion and/or demonstration of this beforehand may
be very useful. (In fact, this activity can be a great way to reinforce concepts of
reflection transformations.)

Follow-up

If your students take to this activity, you might want to let them see how a similar
“two points to two lines” fold can solve another classic Greek problem: doubling
the cube. This problem asks one to construct a cube that is twice the volume of
a given cube, and this is equivalent to constructing \VE_ Again, straightedge and
compass cannot perform this task, but origami can.

The following method was developed by Peter Messer [Mes86]. First a square
piece of paper needs to be folded into thirds; see the Dividing a Length into nths
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Exactly activity for instructions on how to do this. Then do the origami “move” of
folding p; onto L; and p; onto Ly simultaneously. The image of p; under this fold
will divide the left side of the paper into two lengths, the ratio of which is \3/5

Proving that this works is a very challenging Euclidean geometry exercise.
None of the steps are particularly hard, but the elements of this problem have
a tendency to get out of control, generating overly complicated equations unless
done in the proper sequence. A helpful trick is to let Y = 1, so that the side of the
square is X + 1. Then all we need to do is prove that X = V2.

o
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Label things as in the above figure. We can use the Pythagorean Theorem on
AABC to get that d = (x* + 2x)/(2x +2). Also, the length of AD is
X—(X+1)/3=(2X—-1)/3. Now, AABC and AADE are similar (see the Haga’s
“Origamics” activity for details, as this is just Haga’s Theorem), so we have

d__2X-1 = X*42X _ 2X-1
X+1-d X+1 X24+2X+2 X+1

= XP4+3X24+2X =2X3 +3X2 42X -2 = X3 =2.

Bingo!



Activity 6
SOLVING CUBIC EQUATIONS
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For courses: geometry, abstract algebra

Summary

Students are led through a paper folding activity that explores the type of equa-
tions that are generated by a more powerful origami operation. The activity in-
volves foldi_ng the paper and drawing points that, when connected, form strange-
looking curves. Students model this process and discover that the curve generated
is actually a cubic equation. These curves can also be generated on Geometer’s
Sketchpad.

Content

This is a more advanced foray into geometric constructions via origami. As such,
it wouldn't be feasible to do this activity without first doing the previous two (on
folding a parabola and trisecting an angle) with the class. In fact, the origami
operation that this activity explores is exactly the key step in the angle trisection
construction. Without that as motivation it would be difficult to get students to
understand the significance of the “two points to two lines” fold.

This folding operation has both geometric and algebraic interpretations. Ge-
ometrically, it's equivalent to finding a common tangent line to two parabolas
drawn in the plane. Algebraically, it's equivalent to solving a general cubic equa-
tion. Either of these can be explored in depth, depending on the focus of one’s
course.

53
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Handouts

Because of the need to motivate this folding operation, the handouts assume that
the students have done the angle trisection and parabola exercises.

(1) Introduces the folding operation and the folding activity.
(2) Helps students simulate the folding activity on Geometer’s Sketchpad.

(3) Asks students to model the fold and find an equation for the curve generated
in the folding activity.

Time commitment

Students who have done the Folding a Parabola activity should have no problem
with the folding component of this one, but it will still take a good 20 minutes
of class time. Modeling it on Geometer’s Sketchpad should only require 10-15
minutes. Deriving the equation for the curves is doable in class by students who
completed the parabola activity, but will take another 20 minutes.



HANDOUT

A More Complicated Fold

The origami angle trisection method is able to do what it does by using a rather
complex origami move:
Given two points p; and p; and two lines L; and L,, we can make a
crease that simultaneously places p; onto Ly and p; onto L,.

Question 1: Will this operation always be possible to do, no matter what the choice
of the points and lines are?

Question 2: Remember that when we fold a point p to a line L over and over
again, we can interpret the creases as being tangent to a parabola with focus p
and directrix L. What does this tell us about this more complex folding operation?
How can we interpret it geometrically? Draw a picture of this.
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Activity: Let’s explore what this operation
is doing in a different way. Take a sheet
of paper and mark a point p; (somewhere
near the center is usually best) and let the
bottom edge be the line L.

Pick a second point p, to be anywhere else
on the paper. Our objective is to see where
p2 goes as we fold p; onto L over and over
again.

So pick a spot on L; (call it p"l) and fold it
up to p;. Using a marker or pen, draw a
point where the folded part of the paper
touches p;. (If no other parts of the pa-
per touch py, try a different choice of p}.)
Then unfold. You should see a dot (which
we could call p5) that represents where p»
went as we make the fold.

Now choose a different p] and do this over
and over again. Make enough p} points so
that you can connect the dots and see what
kind of curve you get.

Activity 6
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Question 3: What does this curve look like? Look at other people’s work in the
class. Do their curves look like yours? Do you know what kind of equation would

generate such a curve?
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Simulating This Curve on GSP

We're still considering this unusual origami maneuver:

Given two points p; and p; and two lines L; and L,, we can make a
crease that simultaneously places p; onto L; and p; onto L,.

So that you don’t have to keep folding paper over and over again, let's model our
folding activity using Geometer’s Sketchpad. This will allow us to look at many
examples of the curve this operation generates and do so very quickly.

B
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Here’s how to set it up:
(1) Make the line L and the point p;.
(2) Make a point p} on L; and construct a line segment from p; to pj.
(3) Construct the midpoint of m

(4) With this midpoint and the segment p; p| selected at the same time, choose
the Perpendicular Line option from the Construct menu. This makes the
crease line.

(5) Now make a new point, p;.
(6) Select the crease line and under the Transform menu choose Mark Mirror.

(7) Then select p2 and choose Reflect under the Transform menu. This will re-
flect po about the crease line “mirror.” Label the new point p5.

(8) Select only p5 and turn on Trace Point from the Display menu.

Then when you move p; back and forth along L,, Sketchpad will trace out how
p’z changes. This will draw a curve, possibly like the one you made by folding

paper.

Activity: Move p; to different places on the screen and see how the curve changes.
How many different basic shapes can this curve take on? Describe them in words.
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What Kind of Curve Is It?

To see what type of curve this operation is giving us, make a model of the fold.

Let p1 = (0,1).
Let L; be the liney = —1.

We'll fold py to p} = (t, —1) on L.

Let py = (a,b) be fixed.
Then, we want to find the
coordinates of p, = (x,y),
the image of p, under

the folding. This will give us
an equation in terms of x and
y that should describe

the curve which we got in
our folding activity.

Instructions: Find the equation of the crease line that we get when foldi_ng p1
onto p"l. Use this and the geometry of the fold to get equations involving x and y.

Combine these to get a single equation in terms of x and y (with the constants a
and b in it as well, but no f variables). What kind of equation is this?
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SOLUTION AND PEDAGOGY

Handout 1: A more complicated fold

This may be the first time students have seen this folding operation stated explic-
itly. It would be useful to compare this statement to the angle trisection instruc-
tions, if only to convince students that this fold can be done.

Question 1. No, this fold is not always possible to do. If one imagines the lines
L, and L, to be parallel and far apart and p; and p; close together in between the
two lines, one can see that putting p; on L; and p; on L; would be impossible.
(After all, every fold is an isometry, so the distance between p; and p, has to be
preserved.)

Question 2. Since we're folding p; onto Ly, the crease line that we make will be
tangent to the parabola with focus p; and directrix L;. Similarly, the crease line
will also be tangent to the parabola with focus p2 and directrix L;.

Therefore, this foldi_ng operation is equivalent to finding a common tangent
line to two different parabolas.

Folding activity. Like the Folding a Parabola activity, this one requires many
folds and many plotted points pé to generate a reasonably good curve. As more
folds are made, there often comes a time when the fold actually moves the point p
instead of just bringing a layer of paper on top of it. In these cases a mark must
still be made in the paper where p, goes.

The below ﬁgure shows one possible example, with x- and y-axes shown for

reference.
19 p]
os - /N
|'. \-__
. |
L' . - 4
-1 05 L 05 .'I 1 15 3 X-axis
\\\\ .'Il.;
0.5 \_d\pz
'_J".
\\\
L S
1 . 7
/ S~

y-axis



60 Activity 6

Question 3. The curve should look like a cubic equation; however, it’s very likely
that students may never have seen the graph of a genuine cubic equation before,
so they may not be able to conjecture what it is.

Handout 2: Simulating this curve on GSP

After the paper folding activity would be a good time to have the students explore
more such curves on Geometer s Sketchpad, if the computer resources needed for
this are at hand. Again, nothing compares to the students plotting these curves
themselves by actually folding paper, but GSP will allow each student to experi-
ence the variety of shapes that cubic curves can create.

If the students are experienced with GSP, you can have them develop this simu-
lation without the handout. But using the Mark Mirror and Reflect features might
not be familiar to some students, so detailed instructions on how to set this up are
included on the handout. Below is a sample screen shot of what students might
see.

ol

Handout 3: What kind of curve is it?

This modeling exercise is really a beefed-up version of the parabola activity. In
fact, the initial setup is exactly the same: p; = (0,1), Lyisy = —1, and p‘i =
(t, —1). So the crease line will be the same as that generated in the parabola activ-
ity: y = (t/2)x — t2/4.

Incorporating the point p; is the real challenge. Relationships between the
coordinates (a,b) of p, and the coordinates (x,y) of p; need to be found. And
since our aim is to get an equation of the curve that p) travels as we vary t, we
want to make sure that we eliminate the f variable at some point.

One potential source of confusion is the choice of using the variables (x,y) to
represent the point p). This is done so that our final equation will be in terms
of x and y, variables students are familiar with when encountering equations of
curves. They need to realize that these x and y variables are not the same as the x
and y variables in the equation of the crease line.

So, students need to make somgﬁlﬁgy observations to complete thimdout.
First, the slope of the line segment p; p‘i should be the same as that of p; p"z. This
means that

SL R M
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Many students will then be tempted to plug this into the equation of the crease line
to obtain a single equation with only x and y as variables. (Remember, a and b are
constant.) But this is flawed because the x, y variables in the crease line are not the
same as those of p5. In fact, some students may choose to label the p) coordinates
as (x',y') just to distinguish them.

However, there is a point that we know is on the crease line—the midpoint of
pz—p‘;_, which is ((x +a)/2,(y +b)/2). If we plug this point into the crease line
equation, and then plug (1) in for the #/2 variables, we obtain a valid equation in
terms of the p5 = (x,y) coordinates:

y+b _ (x—a\x+a (x—a)?
2~ \y=v) 2 T woop

= (Y +b)(y —b)* = —(x* —a®)(y — b) — 2(x —a)*.

Notice that this is a cubic curve! (We have a y3 term on the left-hand side and an
x? y term on the right.)

Unfortunately, seeing this equation might not be as fundamentally thrilling
to a typical undergraduate math major as it would be to faculty. But plotting
this equation for specific values of (a,b) can be very illuminating, as it generates
the same curves that the students were creating with the folding activity. (For
example, the plot in the folding activity section was made using (a,b) = (.5, —.5).)
Plotting such an equation requires either Maple, Mathematica, or an expensive
enough graphing calculator, but making students do this is very worthwhile.

Pedagogy and follow-up

As stated previously, this exercise is an advanced paper folding activity, and it
should only be investigated after the previous two activities on folding a parabola
and trisecting an angle. In this way, the parabola activity combines paper fold-
ing with a subject—parabolas, conic sections, and their equations—with which
students are already familiar. Then students will likely have heard of angle tri-
sections before, so that activity will also be combining the familiar with the novel.
This is then carried into the current activity, where everything is likely to be com-
pletely new to the students. The effect, from the students’ perspective, can be one
of being brought into much more advanced mathematics with a much “deeper”
feel. Indeed, the fact that cubic equations cannot be so easily classified and are
unfamiliar to students can create such a feeling.

Thus, in the folding exercise in this activity, students are wading into unfa-
miliar waters. They’ll need to understand the “rules” of the activity very clearly
before embarking. Also, it helps to make sure that students in the class sample a
wide variety of choices for the point p;. Some will produce “loops” like the sample
plot previously given. Others will seem to have a “cusp” point or be an ordinary-
looking curve with an odd bump in it. In fact, instructors might want to have all
students start with the same choice for p; and then make sure a good enough sam-
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pling of p, points are chosen so that a wide enough array of cubic curves will be
seen.

Using the model in the third handout to create the equation for the cubic curve
can be very difficult for students. This is a great example of something that seems
very easy once one sees how to do it but beforehand seems incredibly difficult. It’s
also hard for students to see the approach of this model, which is fundamentally
different from our approach to the parabola problem. For the parabola we wanted
to find the curve tangent to all the crease lines. Now we're trying to study the be-
hawior of p"z as we fold p; to L; over and over again. Thus we want some equation
involving only the variables x and y (and not ¢, although a and b are okay because
they're constants) that reflects what p5 is doing as we fold. And any such equa-
tion that we generate from the model should do the trick (provided it isn’t overly
complicated), since it would give us a constraint on the possible coordinates of p5.

Note that in the folding activity we ignore completely the role that line L; plays
in this origami move. The justification for this is because if we folded p; to a line
Ly, then the fold would be determined by folding p> to a spot where L intersects
our cubic curve. Locating such a spot would be “solving” our equation at a specific
point.

As stated above, it’s incredibly useful for the students to be able to plot these
cubic equations on a computer or graphing calculator to see directly that they
look like the curves generated by the folding activity. Being able to connect the
mathematical model to the physical activity can be a great moment of clarity for
students.

Pesky question. As in the parabola activity, this one gives evidence that origami
can solve certain equations, in this case cubic equations, but proving this would
require giving an argument that an arbitrary cubic equation can always be solved
via origami. 5o how do we do this?

I'll describe a method of solving arbitrary cubic equations via origami due to
Alperin, found in [Alp00]. One would like to start with an arbitrary cubic of the
form ¥ +ax2+bx+c = 0, but we can actually get rid of the ¥? term by substitut-
ing z = x — (1/3)a. This gives us

3, 3b—a®_ 9ab—27c—2a°

: ~0.
sk yE 27

Thus we can actually assume that our general cubic is of the form ¥ rax+b=0,
where a and b are rational. Consider the quadratic equations

1—1a Z—beandl —1,1:2
y 2 - ’ J_z .

Since a and b are constructible via origami, the coefficients of these two equations
can be constructed, and thus so can the foci and directrices of these two parabo-
las. The first parabola will have focus (b/2,a/2) and directrix x = —b/2, and the
second will have focus (0,1/2) and directrix y = —1/2. (These can be computed
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using standard precalculus formulas, which of course most people will have for-
gotten but can look up in any precalculus text.)

So, fold (b/2,a/2) onto x = —b/2and (0,1/2) ontoy = —1/2 simultaneously.
This will produce a crease that is tangent to both of these two parabolas, and while
this folding move can sometimes have more than one possible fold, in this case our
crease line is unique. Let m be the slope of this crease line.

Claim: 1 is a root of x¥* + ax + b = 0.

Proof: Let (xp, yo) be the point of tangency of the crease line with the first parabola
and (xq, i1 ) be the tangent point with the second parabola. We can take derivatives
of the two parabolas and plug in these points and m to yield some equations. The
first parabola gives
ay dy
2( ——)—=2b - m=
y dx " yo—a/2

The second yields m = x;, and so y; = (1/2)m?. Also, plugging (x, 1) into the
first parabola equation gives xg = (1 —a/2)?/(2b) = b/(2m?*). However, m can
also be computed in the traditional way:

R
m—JL"Y0 _ 2 Eb n
X1 — Xp m — 2
Simplifying this, amazingly enough, gives m> +am + b = 0. Wow. |

Since we've created a crease line with slope equal to a real root of our arbitrary
cubic, we can easily construct a coordinate with m in it. For example, if we let
(w,0) be the point where the crease line crosses the x-axis (which is thus a con-
structible point), then we fold the line x = w + 1. This vertical fold will intersect
the crease line at the point (w + 1,m). Then we can officially say that we've con-
structed a root of our cubic via origami.

Other questions. There are several follow-up questions that can be asked, which
may make good homework questions and such.

One is, “Could the origami move under consideration have more than one pos-
sibility?” The answer is yes, sometimes. Algebraically this makes sense because
we now see that it is equivalent to solving a cubic, which may have as many as
three real solutions. But it can also, and perhaps more readily, be seen graphically.
Since the fold can be determined by folding p» to a point where L; crosses our cu-
bic equation curve, we really need to determine the number of intersection points
that can be possible. Familiarizing yourself with the shape of cubic curves will
convince you that at most three such intersection points can occur between a cubic
curve and a straight line, as can two or one or none.

Another question would be to ask if the “cubic” origami move is really differ-
ent from the move encountered in the Folding a Parabola activity. Actually, the
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latter move is a special case of the former. If the point p, is already on the line
Ly, then “folding p; to L;" is really just folding p; to itself, which is tantamount
to making sure the crease goes through p2. It can be interesting to see how other,
more simple origami operations can be viewed as special cases of the cubic move.

Abstract algebra approach. One can approach all this from an algebraic per-
spective, which is the more rigorous way to do it, after all. The idea is to analyze
origami constructions similarly to how one analyzes straightedge and compass
(SE&C) constructions.

When modeling SE&C constructions algebraically, we typically consider the
paper that we're drawing on to be the complex plane C and start off with some
given starting points, like the origin, the point 1, and the point i, say. Then we
ask, “What subfield of C can we construct using only the tools of SE&C?” We call
this the field of SE&C constructible numbers, and it is the smallest subfield of C that
is closed under square roots. In other words, & € C is SE&C constructible if and
only if « is algebraic over Q and the degree of its minimal polynomial over Q is a
power of 2, i.e. [Q(a) : Q] = 2" for some integer n > 0. That is, SE&C can solve
quadratic equations.

We can ask the same questions about origami. We think of our sheet of paper
as C and assume that we're given some points to start off with, like the origin,
1, i, and maybe 1 + 7 (to simulate the four corners of a square). We then want to
find the subfield O C C that origami moves can generate from these points. We
call this the field of origami numbers. There are lots of basic origami moves that we
can assume, like given two points, we can make a crease line connecting them, or
folding one point to another, or folding a line onto another line. That can get us
started to generate the rationals, say.

In the Folding a Parabola activity we saw how the move of folding a point to
a line can solve general quadratic equations, and this means O contains the set of
SE&C constructible numbers.

The fold-two-points-to-two-lines origami move studied in this activity, how-
ever, shows that O is bigger than the SE&C subfield. In fact, we proved that O
contains all solutions to cubic equations over the rationals. Stating this more for-
mally takes more work, or rather proving it takes more work. One way to restate it
is the following.

Theorem: Let & € C be algebraic over Q and let L O Q be the splitting field of the
minimal polynomial of « over Q. Then w is an origami number if and only if [L : Q| =
273Y for some integers a,b > 0.

The proof is done basically by formalizing, using field extensions, what we do
when we use either a point-to-line fold (requiring a quadratic) or a two-point-to-
two-lines fold (requiring a cubic) to generate more and more points. See [Cox04]
for an excellent description of how to do all this. Also see [Mar98] and [Alp00].

Note, however, that the theorem above assumes that the fold-two-points-to-
two-lines origami move is the most complicated move that we can make. After
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seeing this move, students might very well wonder whether or not there are any
other, more complicated origami moves that are possible. This turns out to be
a very complicated question. If we assume that all our creases are straight lines
and that we are allowed to make only one fold at a time, then it can be proven
that the fold-two-points-to-two-lines move is the most complex move possible (in
terms of the highest degree equations that it is capable of solving in general). This
was proven by Robert Lang using vector analysis in 2003 [Lan03-2], and a shorter,
geometric version of this proof can be found in [Hul05-1].

If we deviate from these restrictions, however, more is possible. Robert Lang
discovered an ingenious way to quintisect an arbitrary angle by incorporating a
very complicated maneuver that requires making two creases simultaneously
[Lan04-2]. Angle quintisections require the solving of fifth-degree equations.

If you show Lang’s angle quintisection method to your students, you should
let them debate whether or not such origami moves should be allowable. How
is Lang's two-simultaneous-creases move different from folding a sheet of paper
into perfect thirds lengthwise by making the two creases simultaneously? When
do such “simultaneous creases” origami moves become too complicated for hu-
mans to handle? These are all questions that are still being debated in the origami
mathematics community and can make for lively classroom discussions as well.






Activity 7
FOLDING STRIPS INTO KNOTS

\VAVAN
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For courses: geometry, number theory, abstract algebra

Summary

Students are presented with the challenge of taking a strip of paper and folding it
into a knot. (Quite simply, tying the paper into a knot in the same way one would
string.) A regular pentagon should result, and the first challenge is to prove that
this is indeed a regular pentagon.

Then students are asked what other knots could they make? Is it possible to
make a hexagonal or heptagonal knot? What about a square or a triangle knot?
What if we allow more than one strip of paper to be used?

Content

Proving that the pentagon is regular can use straightforward geometry or symme-
try arguments, but the other knot explorations involve number theory and alge-
bra. Determining what knots are possible can be rephrased as a question about the
Euler ¢ function or about generators of the cyclic group Z,,. Possibilities of using
multiple strips, it turns out, is determined by the cosets of a given subgroup of Z,,.

Handout

There is only one handout with two pages. The pages may need to be handed out
separately, as the second page can give students hints for some of the questions on
the first page. Use your own discretion.

Time commitment

The first page will not take much time, maybe 15-20 minutes. The second page can
take longer, both because the math is more involved and because folding larger
knots is a lot harder. Plan on 30-40 minutes for the second page.
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HANDOUT

Knotting a Strip of Paper

Activity: Take a long strip of paper and tie it into a tight, flat knot. That may sound
weird, so the below picture might help.

Question 1: Prove that this pentagon is regular (all sides have the same length).

Tip: When bouncing a billiard
ball off a wall, the “angle of in-
cidence” equals the “angle of re-
flection.” Is anything like that
going on here?

angle of
reflection

angle of
incidence

Question 2: Can you tie a strip of paper into any other knots? Hexagon, heptagon
(7 sides), or octagon? How about triangle or square? Explore this and make a
conjecture about what you think is going on.
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Question 3: In the previous question, you should have been able to make some
other knots. For example, it is possible to make an octagon knot in a number of
different ways. Below is shown one way, finished off in two different fashions.

Think of each side of the octagon as being a number, starting with 0 as the side
the strip entered. Then the strip weaves around and then either exits once the
polygon is finished or when you get back to 0.

In what order does the paper hit the sides? Does this remind you of anything
about the cyclic group Zg (the integers mod 8)? Use this concept to prove the
conjecture that you made in Question 2.

2 3
Vv
or
(—0 /5

Question 4: What if we allowed ourselves to use more than one strip of paper?
It turns out that then we can make just about any knot. Below are shown ways a
hexagonal knot and a nonagonal (9 sides) knot can be made from 2 and 3 strips, re-
spectively. How can the group Z, be used to analyze what these knots are doing?
What do the individual strips represent?

\VAVAN
\
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SOLUTION AND PEDAGOGY

The most important thing to have for this activity is lots of strips of paper. Those
who like to teach in style can acquire quilling strips, which make very colorful
knots. The more budget-minded can find large rolls of paper for accounting cal-
culators and ticker tape in most stationary stores.

Question 1

Proofs that the pentagonal knot is regular may vary wildly, from straight geome-
try attempts to unsupported claims that “it’s obvious by symmetry.” The latter is
actually close to a good idea, but instructors should force students to be specific
here.

The suggestion to think of billiards is meant to make students realize that when
we fold a strip of paper, it behaves in the same way that a billiard ball bounces off
a wall. (Or the way a beam of light bounces off a straight mirror.) See the left
picture below. In other words, the paper is doing the same thing every time it

d\

incidence reflection 4

“turns a corner,” which forces the pentagon to be regular.

a

angle of angle of

For a more rigorous way of stating this, see the right picture above. Angles a
and b are the angles of incidence and reflection of one of the pentagon knot folds,
soa = b. Angles ¢ and d are vertical angles of 7 and b, soa = b = ¢ = d. Butc¢
and f are angles of incidence and reflection of another fold in the knot, so ¢ = f.
Ditto for d and ¢, sowe havea = b = ¢ = d = ¢ = f. Continuing in this way,
we get that all the external angles of the pentagon are the same, implying that the
internal angles are all the same as well. Thus the pentagon is regular.

The web site http:/ / www.cut-the-knot.org has this pentagonal knot as its logo,
and on the web page is a straight geometry proof that the pentagon is regular
(.../proof.shtml). Be warned, however, that such technical proofs are very tedious
and not very satisfying. The intuitive proof given above is more to the point.

Question 2

Folding knots other than pentagons is hard. In fact, don’t let students try to make a
hexagon knot for too long, because it is impossible. Heptagon knots can be made,
however, by adding another “over-under-over” loop to the pentagon knot. No,
this is not easy to do. With the pentagon knot, all the loops need to be put in place
and then the knot is slowly tightened. The same thing needs to happen in the



Folding Strips into Knots 71

heptagon case, only with more loops involved that are much more able to slide
around and cause trouble. Use the below ﬁgure as a guide for how to keep things
arranged before the knot is tightened.

Making such knots takes patience and practice. After struggling with your
first heptagon knot, make another one—it will be a lot easier and come out much
better. Students won't be too surprised at the difficulty of this, but you should try
to make a few yourself to show them.

The conjecture students should be striving for is that any regular polygon can
be knotted in this way from a single strip of paper except for the triangle, square,
and hexagon. Experimentation should allow students to arrive at this result, and
they should be encouraged to try proving it before turning to the second page of
the handout, which provides hints.

In fact, instructors may want to hand out the two pages of the handout sep-
arately. First of all, the first page, as written, could be used in any number of
courses, starting as “low level” as a math for liberal arts class. Only the second
page uses language of group or number theory. Secondly, if students turn to the
second page too quickly, they will get hints as to what kinds of knots can be made.
That’s not necessarily a bad thing. But the two pages don’t have to be handed out
at the same time.

Question 3

The advantage of numbering the sides of the knotted n-gon with the integers
0,1,...,n — 1is that then we can think of folding the knot as following a suitable
cycle in the group Z,,.

Specifically, if we begin our strip at 0, then we want the strip to travel across
the n-gon and come out on some side numbered 2,...,n — 2. Suppose that it
comes out on side a. Then the strip will turn a corner, and by the angle of inci-
dence /reflection argument it will next come out at the 2a side. (It must leave side
a at the same angle by which it entered, and this preserves the number of sides
we “skip” as the strip bounces around the polygon.) So we need to hit every side
of the polygon for the knot fold to work, and this will happen if and only if a
generates the whole group Z,,.

To sum up: We will be able to fold an n-gon if and only if Z; has a group
generator that is not 1 or n — 1. In other words, if and only if there exists an
element of Z,, other than 1 or n — 1 that is relatively prime to n. In other words,
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if and only if ¢(n) > 2, where ¢ is the Euler phi function, the number of positive
integers < 1 that are relatively prime to # (including 1).

We have that ¢(3) = ¢(4) = ¢(6) = 2, so polygons with those numbers of
sides cannot be knotted from a single strip. But ¢(5) = 4 and ¢(n) > 2 for all
n > 6, so all other n-gons can be folded.

Question 4

The fun and amazing thing about this question is that when making knots with
multiple strips, the individual strips of paper each correspond to a coset.

That is, to make an n-gon with multiple strips, first choose a subgroup of Z,;
callit H. If |H| = k, then there will be n/k cosets of H (including H itself), and this
means that we'll need n/k strips of paper.

For example, in the nonagon picture on the handout, I chose the subgroup
H = {0,3,6} in Zsy. This can be thought of as, say, the white strip of paper, which
starts on the 0 side, goes to side 3, bounces to side 6, and returns to side 0. Then
another strip is needed to cover the sides 1 + H = {1,4,7} (the dark grey strip)
and another to cover the sides 2 + H = {2, 5,8} (the light grey strip). This covers
the whole group, so those three strips will complete the 9-gon.

Such multiple-strip knots are not easy to fold, but such a hands-on and direct
application of cosets is too much to resist for an algebra class. It even demon-
strates Lagrange’s Theorem. Also, multiple-strip knots can be made to weave in
very symmetric patterns (as done in the nonagon picture) and thus result in very
attractive rings when made from strips of different colors.

If you are brave enough to attempt one of these multiple strip knots (other
than the hexagon, which is easy), I recommend making a 12-gon knot out of three
strips of paper. While difficult, this one is a bit easier because each strip will fol-
low a coset of {0,3,6,9} which will form a square. Thus the folds will all be at
45° angles to the side of the paper. The length of paper between these folds still
needs to be determined by trial and error (or you could challenge your students
to determine the exact length needed and then measure it with a ruler), but with
experimentation and tweaking this can make a very attractive woven ring.

Background

People seem to have known about folding pentagonal knots in strips of paper
for a long time. According to Fukagawa, it forms the subject of a Japanese san-
gaku dating back to 1810. Sangaku were geometry problems artfully written on
wooden tablets and hung in Shinto temples during Edo-era Japan (1600s-1800s).
They form excellent evidence that common people in ancient Japan would play
with recreational geometry problems, and the fact that some of these san gaku were
about paper folding means that some Japanese of that time were interested in the
mathematics of origami. (See the Haga's “Origamics” activity for another example
of an origami sangaku.) This particular sangaku depicts a picture of a pentagonal
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knot folded from a strip of paper and asks the reader to determine the relationship
between the width of the paper strip and the side length of the pentagon.

References to larger polygonal paper knots are more rare. One of the earliest
seems to be by Morley in 1924 [Mor24], who shows instructions for pentagon,
hexagon, and heptagon knots and generalizes them.






Activity 8
HAGA'S "ORIGAMICS”

For courses: geometry, math for liberal arts, introduction to proof

Summary

Kazuo Haga’'s “Origamic” activities ask students to explore simple, geometric
properties found when we fold paper in a prescribed way. The aim of these ac-
tivities is to give students an easy-to-explore paper folding puzzle so that they can
experience a micro-version of the three stages of mathematical research: explo-
ration, conjecture, and proof.

Content

Haga’s activities are all geometry-based. Some require no prior knowledge at all,
while others make use of some standard Euclidian geometry facts. The methods
of discovery, conjecture, and proof, however, lie at the heart of all these exercises.
Haga’s activities have been published, in Japanese, in a book ([Hag99]) and
in several articles in the now-defunct Japanese origami magazine ORU [Hag95].
Most of the material presented here, however, is reproduced in Haga's article
“Fold Paper and Enjoy Math: Origamics” in the proceedings book Origami’: Third
International Meeting of Origami Science, Mathematics, and Education [Hag02].

Handouts

There are four handouts, each an example of Haga’s origamics. Each activity will
require lots of small squares of paper for each student (three-inch memo cube pa-
per is ideal).

(1) Folding TUPs.

(2) All Four Corners to a Point.
(3) Haga’s Theorem.

(4) Mother and Baby Lines.
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Time commitment

Each activity will take a whole 50 minute class, although it does depend on the
level of your students.



HANDOUT

Folding TUPs

Take a square piece of paper and label the lower right-hand corner A. Pick a ran-
dom point on the paper and fold A to that point. This creates a ﬂap of paper, called
the Turned-Up Part (or TUP for short).

a triangle

A

How many sides does your TUP have? Three? Four? Five?

Your task: Experiment with many TUPs to find an answer to the question, “How
can we tell how many sides a TUP will have?”

Follow-up: What if we allowed the point to be outside the square? Then what are
the possibilities?



HANDOUT

Haga’s Origamics: All Four Corners
to a Point

Take a square piece of paper and pick a point on it at random. Fold and unfold
each corner, in turn, to this point. The crease lines should make a polygon on the
square. (Some sides of the square may be sides of this polygon.)

° °
a hexagon

How many sides does your polygon have? Five? Six? Could it have three,
four, or seven?

Your task: Do this “all four corners to a point” exercise on many squares of paper.
How can you tell how many sides your polygon will have?

Follow-up: What if we used a rectangle instead of a square? Then what are the

possibilities?



HANDOUT

Haga's Origamics: Haga's Theorem

Take a square piece of paper and mark a point P at random along the top edge of
the paper. Then fold the lower right corner to this point.

P
v

Question 1: What nice relationship must be true about the triangles A, B, and C?
Proof? (This is known as Haga’s Theorem.)

Question 2: Suppose that you took the point P to be the midpoint of the top edge.
Use Haga's Theorem to find out what the lengths x and y must be in the below

figure.




HANDOUT

Haga’'s Origamics: Mother and
Baby Lines

Take a square piece of paper and make a random crease through it. (Like in figure
A and B below. This is called the mother line.) Then fold and unfold all the other
sides of the paper to this line. (Like in figures C-F below. These are called baby
lines.) You'll see a bunch of crease lines (figure G).

A -~ B

D

Your task: Experiment with various mother lines on separate sheets of paper and
compare your results. What conjectures can you make about the intersections of
the baby lines? Prove it/them.
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SOLUTION AND PEDAGOGY

Kazuo Haga is a retired professor of biology from the University of Tsukuba,
Japan. Since his retirement, he has been running Haga’s Laboratory for Science
Education, where he promotes his “origamic” activities as a way to develop scien-
tific reasoning skills among children and students. Haga invented the term origam-
ics as a way to describe the scientific side of paper folding, since often origami is
thought of (especially in Japan) as only an activity for children.

Do note, however, that Haga's activities pose some serious challenges for both
teacher and student. They are deliberately open-ended, so that students will be
forced to experiment, make conjectures, and then try to prove them. At the same
time, some instructors may be faced with students, even math majors in an in-
troduction to proofs course, who are resistant to such open-ended assignments.
Keeping such students motivated and on task might be difficult, and instructors
will need to figure out what works for their kind of students. Perhaps grades or
the “glory” of getting a conjecture or theorem named after themselves (for inter-
nal class use) will be enough motivation. In any case, these activities are asking
students to think in sophisticated ways, and instructors should not underestimate
how difficult this can be.

Handout 1: Folding TUPs

Students should quickly realize that as long as the random point is chosen to be
inside the square, only triangle and quadrilateral TUPs are possible.

Experimenting shows that when we pick the point nearby the main diagonal
of the square—the one going from the point A to the opposite corner—we always
get a triangle. A more careful look shows that a quadrilateral will result only if a
whole side of the paper is folded over. Thus we can think of the two sides of the
square that A lies on as acting as radii of circles (with A on the circumference); if A
is folded to a point beyond one of these radii then the corresponding corner (either
the upper right or the lower left) will be folded over, creating a quadrilateral. Thus,
we can color the square into the regions shown below, thus solving the problem.
(Note that the boundaries belong to the triangle region.)
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) Triangle region
o uadrilateral region
Q g

A

Follow-up. When allowing ourselves to fold the corner A to points outside the
square, we need to think about when this would and when it wouldn’t make sense.
Clearly if we fold A to a point very far away from the square, the “fold” would
be tantamount to just flipping the entire square over. But if we fold A to a nearby
outside point, we can get pentagonal regions for our TUP.

.

A S

This creates a “new radius” to consider. Or rather, we get a pentagon if both of
the sides adjacent to A get folded over. This creates a circle centered at the corner
opposite A whose radius is the length of the diagonal of the square. (See below.)

@D Triangle region
Q Quadrilateral region
O Pentagonal region

While the solution above is perfectly fine and rigorous, more advanced stu-
dents might devise other methods of proof for this problem. A group of my stu-
dents came up with an analytical approach. Suppose that the square is in the
xy-plane with the lower left corner at the origin, A at the point (1,0}, and that we
fold A to the point P = (a,b). The crease line will be the perpendicular bisector of
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the segment AP. We can find the equation of this crease line using the same meth-
ods as in the Folding a Parabola activity. The slope of AP is —b/(1 —a), so the
slope of our crease line is (1 — a)/b. The midpoint of AP, ((a+1)/2,b/2), is on
the crease line. Thus, the crease equationisy —b/2 = ((1 —a)/b)(x — (a+1)/2),
which simplifies to

_l-a  a+b-1
IE Ty 2%
The y-intercept of this line is (4% + b? — 1) /2b, and if the lower left corner is going
to fold over (and thus make the TUP have more than three sides), then this y-
intercept has to be greater than zero. That is, we'd want a2 +b2—1>0,o0ra?+

b? = 1. This is the equation for one of the circular regions. Equations for the others
can be obtained by similar means.

Pedagogy. The handouts for Haga's origamics are deliberately open-ended. The
point is for students to come up themselves with the idea of shading different re-
gions of the paper to indicate different TUPs and to generate enough data to get
a feel for the proper picture. That’s the experiment-conjecture-proof method that
lies at the heart of mathematical research.

Still, there are many leading questions/suggestions an instructor can give to
help students along, although there is a lot of value to letting groups of students
hammer away at this activity for extended periods of time. The following list of
tips could be given to guide students in their thinking:

(1) Experiment with many choices for the target point P to get data, from which
you might make a conjecture. You could even be systematic about it by form-
ing a grid of points, letting P be each of these points, and coloring the point
depending on how many sides its TUP had.

(2) Following this lead, try to think of what region of the square yeilds choices
for P that give triangle TUPs and what regions give other TUPs.

(3) After thinking about that, can you try to nail down where the boundary be-
tween these regions are? For example, if you move the point P around, when
will it change from a triangle TUP to a quadrilateral TUP?

Handout 2: All Four Corners to a Point

Students may think that only pentagon and hexagon regions can be made, but
there are a finite number of places where a quadrilateral region is formed: the
exact center and the four corners. Those are more like anomalies, however. The
only regions with nonzero area are those that create pentagons and hexagons.
Actually, this problem is very similar to the TUP handout. With TUPs, we
needed to keep track of whether the chosen point causes a corner of the paper to
turn over. With the current activity, we care about whether or not midpoints of the
sides get folded over. See the figures below to see why. If the point P to which
we're folding is far enough away from a side of the square, then the two crease
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lines made by the corners of that side will intersect at a point on the square. On the
other hand, if P is close enough to the side, then the two crease lines will intersect
at a point not on the square. This will determine whether or not those two crease
lines will add two or three sides to the region containing P on the square.

7Y
/ three. sides'

Pe ’ \

The difference between being “far enough away” and “close enough” is de-
termined by drawing a circle of radius 1/2 the side of the square centered at the
midpoint of the side. (If a corner adjacent to the side gets folded outside of this
circle, then the midpoint moves when the corners are folded. Otherwise it stays
put.)

Then, we need to see how all four of the sides will interact. The four circles
centered at the midpoints will only intersect in pairs. Now, if we momentarily
ignored the sides of the square, then for a given point P, the region containing P
determined by the crease lines will always be a quadrilateral. But then the sides
of the square will cut off a number of corners of this quadrilateral equal to the
number of circles P is inside. The most number of circles P could simultaneously
be inside is two, generating a hexagon. Otherwise P will be in only one circle,
giving a pentagon (excluding the five cases mentioned earlier where P is not in
the interior of any circle). Overlapping the four circles provides a nice picture of
the hexagon and pentagon regions, as shown below left.

What about if P lies on the boundary of one of the circles? Being on the bound-
ary means that the two creases intersect on the boundary of the square, so a new
side of the point’s region will not be generated. So boundary points will be part of
the pentagon regions.

Follow-up. The same analysis works with rectangle paper, but the surprising
thing is that heptagon regions are now possible! (See the right figure above.)
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Pedagogy. As with the TUP activity, the whole point of this is for students to
analyze and create a model of the situation on their own. So very few hints should
be given by the instructor, aside from clarifying the nature of the problem.

In my experience, students who work through the TUP activity pick up on this
one pretty quickly. In fact, this one could be given for homework if the TUP one is
done in class.

Handout 3: Haga's Theorem

This activity might be the first such “origamic” result that Haga developed, which
may be why people in the Japanese origami community named it after him. But
since then an example of a Japanese sangaku (geometry problems written in 1600s—
1800s Japan and left in religious temples for other people to read and solve) was
found implying that this result was known to Edo-era Japanese geometers. (See
[Fuk89] p. 37 and p. 117.) Nonetheless, it seems Haga was unaware of this obscure
reference.

Question 1. The basic result is that the triangles A, B, and C on the handout are
all similar. The proof is simple. In the figure below we have that a; + 51 = 90°
(since a3 +90° + B1 = 180°), and we also know that B1 + B2 = 90°. So az = B,
and similarly &y = 1. Thus A ~ B, and the same reasoning shows that B ~ C as
well.

What has made Haga’s Theorem so popular among origamists is the fact that
this simple one-fold move creates a figure with a wealth of elegant geometrical
aspects. The main application for origami purposes is that Haga's Theorem can
give us simple solutions to the problem of dividing the side ofa square into 1/nths,
where 7 is some odd number. An example is seen in the next question.

Question 2. There are many tools at our disposal with which to find the lengths
of the sides x, ¥, and z in the ﬁgure. Namely, we have the similar right triangles to
work with, as well as the fact that z = 1 — x, since the segment of length z is the
image of the 1 — x segment under our fold. So, using the Pythagorean Theorem
on triangle A,

1/44+22=(1-x)? = 2 =3/4-2x+x> = x=3/8.
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Notice that since the x% terms cancelled out, we found that x is a rational number.
Thus z = 5/8 is also rational. Now, to find y, or just about any other length of
the segments that Haga's Theorem generates, we'll take advantage of the similar
triangles. Since this involves only comparing ratios, we know that i will also be a
rational number too!

This means that Haga’s Theorem can be applied to obtain rational divisions of
the side of a square, and if we're lucky then these rational divisions might turn out
to be useful. Indeed, A ~ B gives

2y = —1—~ = Y= %
2x 3

Of course, the lengths of all the segments in handout figure can be found in this

way. In fact, to see the full power of Haga’s Theorem, let the placement of the

point P be arbitrary and then compute the lengths. If we label these lengths as

in the figure below, letting the length to the right of P be x, then the remaining

lengths become

_(tna-x 20 1447 1 (1-2x)?
n= 2 T T T T
P - SN ek B g
5= 1+x 2 )Y :

Pedagogy. In a sense, developing and exploring Haga’s Theorem is merely an
intense application of similar triangles, the Pythagorean Theorem, and basic al-
gebra. One could envision it as a great activity for a precalculus or other basic
algebra class, except the motivation tends to get lots on such students. In fact, any
student other than a math major would likely not be impressed by the elegant,
one-fold manner in which Haga’s Theorem gives us a bevy of rational lengths.
This is why in the handout I chose to include only one example of this, show-
ing how the length 1/3 can pop out. This can be motivated somewhat, since no
student will likely be able to know of any other means by which a square piece
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of paper could be divided into perfect thirds (unless they’ve done the Dividing a
Length into nths Exactly activity).

Still, everything about this activity is doable by any college student. The con-
cept of similar triangles is sometimes given short shrift in high school geometry
classes, but it, along with the Pythagorean Theorem and basic algebra, are things
anyone from general education students on up can be expected to know.

Thus when groups of students are working on this handout, very few hints
should be given by the instructor. Hinting that the triangles should be examined
could be offered, or possibly posing Socratically, “What do we remember about
right triangles?” but no more.

Haga’s Theorem can be modeled, to great effect, on Geometer’s Sketchpad.
One would have to construct a square and then do something similar to the Fold-
ing a Parabola activity to construct the crease line made when folding the lower
right corner to a random point P on the top edge. (Construct the segment connect-
ing these points, and then the crease will be the perpendicular bisector.) Then use
GSP to reflect the bottom part of the paper about this crease line. The advantage
of doing this is then you can have GSP measure the lengths of the various line seg-
ments and then students can see how they change as you move P back and forth
along the top edge. In this way, it becomes very easy to see what you get if P is at
the 1/4 mark, or the 1/3 mark, or the 2/3 mark, etc.

Of course, there’s much more that can be done with Haga’s Theorem. In his
book Geometric Constructions in Origami [Ger02], which is in Japanese, Austrian
geometry teacher Robert Geretschldger proposes a series of interesting facts about
Haga’s Theorem. Namely, if we consider the labeling as shown below, suppose
that we draw a circle centered at the square’s corner C with radius equal to a side
of the square. Then this circle will be tangent to the line C'D’. This can then be
used to prove that the perimeter of AAGC’ is equal to half the perimeter of the
original square, and that the sum of the perimeters of triangles C'BE and GD'F
is equal to the perimeter of triangle AGC’. (This problem was posed in the 37th
Slovenian Mathematical Olympiad, 1993.) As you can see, Haga’s Theorem is rich
with secrets.
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Handout 4: Mother and Baby Lines

Of the four origamics exercises presented here, this one is the most challenging.
Developing the proper conjectures will take some experimentation and creativity,
as they are not obvious.

As students (or professors too) struggle to find patterns in the intersecting baby
lines, it can be helpful to remember that half the battle when researching a wide-
open problem is to ask the right questions. For example,

¢ Do the baby lines seem to intersect at any interesting angles?

e Is there any significance to the number of baby line intersections on each side of
the mother line?

¢ Does anything interesting happen when we choose the mother line to be some-
thing symmetric, like a diagonal of the square or a “fold in half” vertical line?

e Are any three of the intersection points collinear (other than obvious cases)?

Exploring questions like these can uncover many things that are going on here.
The figure below tells part of the story (at least in one example).

In the left-most picture are what Haga calls (see [Hag02]) the primary crease lines
of the square. We can see that all of the baby line intersection points seem to lie on
these primary lines!

But that's not the only thing that students could conjecture. Notice that some
of the baby lines seem to intersect at right angles. In fact, if we consider a baby
line made by a side, call it S folded to the mother line, and then consider a second
baby line made from a side parallel to S (and on the same side of the mother line),
then these two babies seem to intersect at right angles. Do they?

These conjectures can be proven using a few applications of Euclidean geome-
try. The most basic example of this can be seen in the intersection point labeled a
above. This point lies inside a right triangle made by the mother line and the top
and right sides of the square. In fact, the baby lines made in this triangle are angle
bisectors of the triangle. So the point a is actually the incenter of this triangle, and
thus it will also lie on the angle bisector of the other corner of the triangle, which
just happens to be a primary line of the square. Bingo!

The other intersection points can be explained if we extend the mother line as
well as some sides of the square. Point b, for example, is also the incenter of the
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right triangle made from the extended mother line and the extended bottom and
left sides of the square, which proves that it lies on a diagonal. This point is crucial;
we can see that when we fold a side segment S of the square to the mother line, if
S is adjacent to the mother line, then the crease made will be a bisector of the angle
made by S and the mother line. But if S is not adjacent to the mother line, then the
crease made is still an angle bisector, but now it’s bisecting the angle made by the
mother line and S extended so they intersect off the piece of paper.

Now consider the point ¢, where we can extend the mother line and the left
side of the square to view the angle that one of ¢’s creases is bisecting, as shown
below, forming MNABC with the other baby crease line at c. We have two things
to prove: (1) That ¢ also lies on a primary crease line and (2) that the baby lines
meeting at ¢ intersect at right angles.

B

e
7 €
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It can be very easy for students to accidentally assume what theyre trying to
prove here. For example, students may claim that the point C lands on the point
A when they fold crease line Bc, which proves the babies are at right angles. But
the baby line AC was made by folding the segment AD to the mother line, and
that does not directly imply that C must land on A when we fold Be. A student’s
folded example may provide good evidence that this is indeed happening, but
that’s not a proof! We must be wary of “proofs by origami” since we can’t always
trust everything we see happening on folded paper.

A better approach is to note that since the left and right sides of the square are
parallel, we have that the alternate interior angles they make with AC are equal.
That is, ZBCA = ZCAD. But by the definition of AC, we know that AC bisects
ZBAD, so ZCAD = ZCAB. Thus ZCAB = ZBCA, which proves that AABC is
isosceles.

This immediately gives us what we want. The base of an isosceles triangle is
perpendicular to the angle bisector opposite it, which gives us the perpendicular
baby lines. And since segments Cc and Ac are congruent, the point ¢ must lie
on the vertical half-way line of the square, which is a primary line. A similar
argument will further show the same results for the baby line intersection point d.
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For points e and _f , we can see that they lie on the excenter of some well-chosen
triangles. An excenter of a triangle is the intersection of one of the interior angle
bisectors and two exterior angle bisectors. It is the center of a circle, outside the
triangle, that is tangent to one side of the triangle and extensions of the other two
sides. This is more easily seen in the left figure below, where we consider ABEF.
(This is just the top part of the isosceles triangle that we considered previously.)
We see that the baby line intersection point f lies at the intersection of the internal
angle bisector at B and the external angle bisector at F. Thus f lies at the excenter
off the bottom side of ABEF, and thus the external angle bisector at E will also
pass through f, which happens to be a primary crease line. A similar argument
can be used for the pointe.

B

Now we are left with the point g. According to Haga himself, “In mathematical
classes or courses, students find the most difficulty in proving that this point is on
a primary crease.” [Hag02] However, g is also the excenter of a triangle. As seen
in the right figure above, the baby lines that define ¢ are external angle bisectors
of AGAF, and the interior angle bisector for this excenter is a primary crease line.

One need not rely on excenters to get these results, however. Geometry stu-
dents will likely find other proofs. As an example, Haga offers the following al-
ternate proof for the point g: Draw perpendicular lines from g to the right side
of the square (gH), the top side (g]), and the mother line (gI), as in the figure
below. Then, since the baby lines (Fg and Ag) are angle bisectors, we get that
AgAH = AgAl and AgFI = AgFJ. Thus gJ, ¢l and gH all have the same
lengths. That is, the point g is equidistant from the top and the right sides of the
square, meaning that it must lie on a diagonal of the square.
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The advantage to using proofs based on incenters and excenters, however, is
that they generalize easily. Our proofs above were only for one specific case, but
the principles at play with in- and excenters will work with any choice of mother
line. Generalizing proofs that use dropping perpendiculars and such may not be
SO easy.

There are many other explorations that can be made with this activity. For ex-
ample, notice that when the mother line is taken at random, the babies on either
side of it form a collection of lines in general position. Thus the number of baby
line intersection points on either side of the mother line will, in general, be a tri-
angular number. This assumes, of course, that all the intersection points lie on the
square. In fact, if we take into consideration all baby line intersections, even the
ones that occur outside the square, we get similar results if we allow the primary
crease lines to tessellate in a square grid determined by the square paper.

A more ambitious follow-up project would be to explore similar results for
arbitrary, convex polygonal paper. In such cases, the primary crease lines might
be taken to be the angle bisectors of the corners of the paper...

Pedagogy. The main conjecture to be made in this activity, that all the baby line
intersection points lie on primary crease lines, is by no means obvious. There’s a
good chance that a classroom-full of students will not stumble upon this observa-
tion. Instructors can increase this probability, however, by making sure that the
students do their explorations carefully. It's a very good idea that students draw
their mother line (after they've folded it) with a pen for emphasis. Then as the
baby lines are made, suggest that they draw a dot at their intersection points. If
anything, this will make their work neat.

But it’s important that they try a number of examples with different mother
line choices. In fact, it can be interesting (and perhaps suggestive as to what's
going on) to let the mother line be one of the primary lines itself, as suggested in
the questions stated previously. For example, if the mother line is a diagonal of
the square, then we only get two baby line intersection points, both of which lie
on the other diagonal. Looking at simple cases like this, where there’s not much
to observe except for the “obvious” fact that the points lie on the other diagonal,
may inspire students to look for similar behavior on more complex examples.

If anything, the origamics examples provided here illustrate the amazing va-
riety and depth that very simple origami geometry exercises can display. Haga
has many more such activities, and people should try inventing their own. But
aside from being just fun, the real worth of these activities is how each one offers
us a mathematical research micro-laboratory. The full gamut of exploration, con-
jecture, proof, disproof, and so on in the cycle can be found in each of them. As
teachers, all we need to do is let our students loose on them, then sit back and
watch, offering a nudge here and there if needed.






Activity 9
FOLDING A BUTTERFLY BOMB

For courses: geometry, math for liberal arts, math clubs

Summary

Students are taught how to make Ken Kawamura's ”Butterf]y Bomb” and/or the
“capped octahedron” bomb model. After making it, they learn how to make it ex-
plode. In order to repeat this trick, they need to become proficient in assembling it.

Content

The Butterfly Bomb model’s final shape is that of a cuboctahedron whose triangle
sides have become concave, pyramid-shaped chambers. Thus the construction of
this model requires becoming familiar with this object. The model is also quite
hard to put together, and so students have to work at understanding the object’s
structure and symmetry to help them get it together. The explosive nature of the
model provides motivation.

The capped octahedron version is actually a “dual” of the Butterfly Bomb, al-
though it requires fewer pieces of paper and is easier to put together.

Handouts

All the handouts are origami instructions.

(1) Instructions for making the Butterfly Bomb.

(2) Instructions for the classic Masu Box model, which can aid in the Butterfly
Bomb construction.

(3) Instructions for the capped octahedron “bomb” model.
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Time commitment

The capped octahedron model will take 30-40 minutes. The Masu Box and Butter-
fly Bomb will take a full hour. The Butterfly Bomb by itself would also take about
an hour, since it's so much harder to do without the box for help.



HANDOUT

M a kl ng a B Utte rfly B Om b (invented by Kenneth Kawamura)

You'll need 12 pieces of stiff, square paper. Use 3 colors (4 sheets per color).

(1) Take a sheet and fold both diag- (2) Collapse all these creases at the

onals (with valley folds). Fold in

half horizontally with a mountain

fold.

same ftime to get the above ﬁg-
ure. Press flat and score the creases
firmly. Then open it up again.

Repeat with the other 11 squares.

Putting it together: The object is to make a cuboctahedron, which has 6 square

faces and 8 triangle faces.

First form a square base using four units as shown. The units should be layered
over-under-over-under to weave together.

Then use a unit to make a triangle-shaped cavity to the side of the square base.
Again, the units should weave. It will be hard to make them stay together. Work-
ing in pairs (with more hands) will help. Do this on each side of the square base.

Keep adding units,
making square faces
and triangle cavities.
It won't stay together
until the last one is in
place.

Why is it a bomb? Toss
the finished model in
the air and smack it
underneath with an
open palm to see!




HANDOUT

The Classic Masu Box

This box is a classic Japanese model. It also can be a big help for making the
Butterfly Bomb. If making a Butterfly Bomb from 3 in to 3.5 in paper, then make
your Masu Box out of a 10 in square.

(1) Crease both diago- (2) Fold all four corners (3) Fold each side to the
nals and both hori- to the center. center, crease, and
zontals. unfold.

mountaiIIS/z
A

mountains

(4) Unfold the left and (5) Use the mountain (6) ...here. Then fold

right sides. creases shown to the other sides in-
form a 3D box. The A side, making them
regions should land line up with the
on top of the B re- other tabs, to finish
gions as shown. .. the box!

How this can help with the Butterfly Bomb: Use the Masu Box as a holder for
the Butterfly Bomb units as you make it. The square sides of the Butterfly Bomb
should be flat against the Masu Box sides.




HANDOUT

Making a Butterfly Bomb Dual

You'll need 6 pieces of square paper. Use 3 colors (2 sheets per color).

(1) Take a sheet and fold both diag- (2) Collapse all these creases at the

onals (with valley folds). Fold in same time to get the above fig-
half both ways with a mountain ure. Press flat and score the creases
folds. firmly. Then open it up again.

Repeat with the other 5 squares.

Putting it together: The object is to arrange the units like the 6 faces of a cube.
They should weave together to form eight pyramids

The units will not want to stay together until the last one is in place. If you
have trouble, work with someone else to help. (The more hands the better!)

This model is also a “bomb.” Toss it in the air and smack it from underneath
with an open palm to make it explode!

Question: What does this shape remind you of? How would you describe it?
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“SOLUTION” AND PEDAGOGY

Nearly the whole of this activity is in the construction of the models. While there
are concepts that can be gleaned and elaborated from these models (as will be
described below), it is the construction process itself that helps develop mental
images and understanding of certain polyhedral shapes.

The greatest challenge with this activity is in putting the units together to make
the model. Both the capped octahedron and Butterfly Bomb models are very hard
to construct because they are very unstable until the last unit is inserted. Unlike
the PHiZZ unit or other modular units you or your students may have seen, these
units have no locking mechanism. The units basically rest upon one another, and
only when they are all together will their combined weaving provide any kind of
lock. In fact, these models are so delicate that usually the act of inserting the last
unit will cause everything to come apart a little, requiring the whole object to be
squeezed slightly to get everything in its proper place.

Instructors must practice these models many times before challenging a class
with them. Often students will need one-on-one help to begin putting them to-
gether, and if the instructor has a hard time with these models then it probably
won't go well. (Then again, trying to make these models with a math club where
it's a discovery process for both the students and the faculty can be a great experi-
ence as well!)

Below is a list of specific suggestions for teaching these models.

e For the Butterfly Bomb, teach the Masu Box first. Or, if you're pressed for time
in class, assign the Masu Box for homework and have each student come to class
with a completed Masu Box (of the proper size). Using this as a tray to hold the
Butterﬂy Bomb units during construction is a really big help.

e For the capped octahedron, or for the Butterfly Bomb without the Masu Box,
the strategy should be to get 3 or 4 units together and then cup these units in
the palm of one hand while using your other hand to put more units in place.
The fingers of your “cup” hand will have to gingerly try to hold things together
while you do this.

e With these bomb models, two pairs of hands is very helpful. (In fact, an instruc-
tor making one for the first time might want to enlist the help of a colleague.)
Some students will finish these models much faster than others, and these fast
students should help their neighbors with their models. This makes the instruc-
tor’s job easier and helps foster student collaboration.

e The pictures on the handouts were designed to be both efficient and pedagog-
ically meaningful. Not only would it take much more paper to show, step-by-
step, how to assemble the capped octahedron, but it would harm the educa-
tional experience as well. Students need to mentally visualize what is going on
and then experience it by putting the units together. But this also means that
the instructor will have to do a lot of one-on-one assisting of students until it
“clicks” in their heads.
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The time required to teach these models will vary depending on a number
of factors. The capped octahedron model can take 30-40 minutes for everyone
to make one, explode it, and reassemble it. The Butterfly Bomb will take longer,
needing at least a full hour. If the Masu Box is taught first, this will make the
assembly much easier and quicker, but the total time devoted to the activity will be
the same (about 15-20 minutes for the Masu Box and 40 minutes for the Butterfly
Bomb).

Emphasizing content

Simply making these models will latently teach the students much about the struc-
ture of certain polyhedral shapes, but emphasizing the connections afterwards will
do much to reinforce it.

Capped octahedron. As the handout suggests, this model can be viewed as each
piece of paper being a side of a cube. In fact, if you took a cube and “dented” the
edges by pressing in on their midpoints you can get this very same object.

However, the finished object looks more like a bunch of pyramids. In fact,
when making the object it’s often useful to build one of these pyramids at a time
so as to keep track of one’s progress as units are added. So, instructors should ask
their students to count how many of these pyramids are in the final model—there
are eight. And what geometric figure is made by the base of these pyramids? An
equilateral triangle. What famous object is made up of eight equilateral triangle
faces? The octahedron! Thus we can think of this model as having an octahedron
inside it, where the eight pyramids are capping each face of the octahedron. This
is why I refer to this model as a “capped octahedron” and why I do not use this
moniker in the handout. I prefer to let students build the model and then discover
what properties it has. But if students are already familiar with the octahedron,
telling them at the outset that the shape they’ll make is a capped octahedron may
help them put the thing together.

Also, if the concept of duality has been introduced in your class, then it should
make perfect sense for students to visualize this model from the dual perspectives
of the cube and the octahedron.

Note: This capped octahedron shape can be made from many different origami
units. In fact, the Sonobe Unit [Kas87] is a very popular unit, 12 of which can
make this shape (but with a different coloring pattern). Some of your students
may have previously made this model. Many origami books and references refer
to this shape as a stellated octahedron, but this is incorrect. Stellation means to
extend each face of the polyhedron until the face planes intersect in interesting
ways. Doing this to the octahedron does result in “caps” being placed on the
triangular faces, but they will be perfectly regular tetrahedra on each face, not the
right triangle pyramids that we see in our model. Thus, students should not be
encouraged to refer to this model as a stellation.

Butterfly Bomb. The basic structure of this model is a cuboctahedron, or more
precisely a cubohemioctahedron [Weil], which is a cuboctahedron whose triangle
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faces have been dimpled to become pyramid-like chambers. Students who make
this model inside a Masu Box might prefer to view it as a cube-like shape whose
corners have been truncated at the midpoints of each edge. (The square faces of the
model represent the faces of the former cube, and the vertices of the cuboctahedron
are the midpoints of the edges of the former cube.) But this model can also be
viewed as an octahedron whose corners have been truncated at the midpoints of
the edges. This is another demonstration of the duality between the cube and the
octahedron.

Both of these models also have a left- or right-handedness, depending on how
the units are woven together. (For example, does the weaving on each square face
of your Butterfly Bomb go clockwise or counterclockwise?)

Packing to fill space. One very surprising fact is that these Butterfly Bomb and
capped octahedron models can tessellate three-dimensional space (see the figure
below). This is really just a consequence of the fact that three-dimensional space
can be tessellated with octahedra and cuboctahedra, and the caps from the capped
octahedra fit perfectly into the pyramid cavities of the Butterfly Bomb.

Students usually find this tiling property very exciting. Although using class
time to do both models may be excessive, instructors could do one in class and
assign the other for homework. Then students can be encouraged to discover this
three-dimensional tiling property on their own.

Variations

There are a number of variations that can be made from these two models. For
example, suppose that we reverted the pyramid cavity “dimples” in the Butterfly
Bomb so that they poked out of instead of into the model. Then, the basic shape of
the model would be a cube, as shown below on the left. The “units” for this model
are merely squares folded in half. This model is very unstable.
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Alternatively, we could invert the pyramids on the capped octahedron to be
poking inside the model. This turns out to be equivalent to flipping the units
“inside out,” and the result is an octahedral skeleton, shown in the right figure above.
This model is very stable and is not a “bomb” at all.

These and other variations were discovered by a variety of origamists includ-
ing Robert Neale, Lewis Simon, Kenneth Kawamura, and Michael Naughton. (Al-
though Kawamura is credited as being the first to capitalize on the instability of
these models as a way to make them explode.) In fact, there is an entire contin-
uum of models (several continua, in fact) between the six-piece octahedron skele-
ton shown above and a six-piece cube (not shown) made from squares where the
four corners have been folded to the center. Students and instructors should feel
free to explore such variations themselves.






Activity 10
BUSINESS CARD MODULARS

For courses: geometry, math for liberal arts

Summary

Students are shown a very simple modular origami unit that is made from busi-
ness cards and asked to explore the kinds of objects that can be made with it.

Content

This unit can make any polyhedron with all triangle faces and no vertices of degree
6 or higher. Thus, at a basic level this activity is about exploring such polyhedra,
starting with the regular cases of the tetrahedron, octahedron, and icosahedron
and moving into other solids like the triangular dipyramid and snub disphenoid.

Handouts
(1) Describes how to make the basic unit and challenges the students to make
various polyhedra with it.

(2) An optional handout with pictures of Johnson solids with all triangle faces.

Time commitment

Teaching the unit and having students make the tetrahedron and octahedron will
take a good 30-40 minutes. The icosahedron or other objects will take longer, of
course. The whole project could be spread over a few class days, or some of the
models could be left for homework or out-of-class excursions.
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HANDOUT

Business Card Polyhedra

Business cards are a very popular medium in
modular origami, where pieces of paper are
folded into units and then combined, without
tape or glue, to make various shapes. Standard
business cards are 2 inch x 3.5 inch rectang]les, or
have dimensions 4 x 7.

Below are instructions for making a very simple
unit from business cards that can make many dif-
ferent polyhedra. Make the creases sharp! This
unit was originally invented by Jeannine Mosely
and Kenneth Kawamura.

Left Handed Unit

Crazy Terr
My Home

My Town

v

My Business!

A

Question 1: Notice that these simple folds on a business card give us, it seems,

equilateral triangles. Are they really equilateral? How can we tell?

Task 1: Make one left and one right-handed unit and find a way to lock them
together to make a tetrahedron (shown below left). After you do that, use 4 units
to make an octahedron (shown below right). We're not telling you how many left

and right units you need—you figure it out!
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Task 2: Now make 10 units (5 left and 5 right) and make an icosahedron with
them. An icosahedron has 20 triangle faces. (See the below figure.) Putting this
together is quite hard—an extra pair of hands (or temporary tape) might help.

Task 3: What other polyhedra can you make with this unit? Hint: there are lots
more. Try making something using only 6 units. How about 8 units? Try to de-
scribe the polyhedra that you discover in words.
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Johnson Solids with Triangle Faces

Try making these strange polyhedra using the business card unit. You'll have to
ﬁgure out how many units you'll need and whether they should be left- or right-
handed, or a combination of both!

triangular dipyramid snub disphenoid pentagonal dipyramid

V7

triaugmented triangular gyroelongated square
prism dipyramid
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SOLUTION AND PEDAGOGY

Question 1

It seems entirely a coincidence that business cards produce equilateral triangles so
well. But the 4 x 7 dimensions work because arctan(4/7) = 29.7...° = 30°.

A

arctan(4/7) = @ = 30 °

A
)\ J

The Tasks

These units lock together entirely by a “hugging” mechanism. The short flaps
wrap around and “hug” the sides of other units, holding them in place. This only
works if the creases are made sharp, so you should emphasize this. Sharp creases
can be effectively made by running over each fold with a ruler or flat pen. The
tetrahedron goes together the easiest, where the left and right handed units grasp
each other like a pair of hands. There are several ways to make an octahedron
from four units; one can use either 2L and 2R units, or all L, or all R.

The icosahedron is very hard to put together, but only because the units want
to fall apart until the very last one is inserted. Having pairs of people work to-
gether to make this is a very good idea, and you might want to have adhesive
tape available for extra help. Once the model is together it’s fairly sturdy, but one
shouldn’t squeeze it too tightly!

While students may already be familiar with the Platonic solids with all trian-
gle faces (and if they're not, this activity will help fix that!), they will most likely
have to think hard to come up with irregular polyhedra with all equilateral trian-
gle faces. However, there are many such irregular polyhedra, and most require no
more than six to ten business card units to make. The fact is that this business card
unit can make any polyhedron having
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(1) all equilateral triangle faces and
(2) all vertices of degree 5 or less.
The reason for (2) is that if you have a vertex of degree 6, then the equilateral
triangle faces around it make a flat plane, and the units won't be able to hug each

other. Vertices of degree 7 or more will not be convex, and that just doesn’t work
for this unit. But with these restrictions there are still many surprising solids that

For example, above are shown pictures of a triangular dipyramid (left, 3 units),
a snub disphenoid (center, 6 units), and a pentagonal dipyramid (right, 5 units).

N

<

Above left is shown a triaugmented triangular prism, which requires 6 units

can be made.

to make. It has 3 vertices of degree 4 and 6 vertices of degree 5. To the right of it
is a gyroelongated square dipyramid, which requires 8 units to make. It has two
vertices of degree 4 and 8 of degree 5. Think of it as a square antiprism where
square pyramids have been placed on the square faces. You could try to make a
gyroelongated triangular dipyramid, but this doesn’t really exist as a solid because
some of the triangle faces become flat planes, resulting in a parallelepiped. (You
can try to make it anyway using business cards, but it doesn’t stay together very
well.)

These are all examples of Johnson solids, a family of convex polyhedra hav-
ing all sides regular polygons with equal edge lengths, excluding the other tra-
ditional families of polyhedra (the Platonic solids, Archimedean solids, prisms,
and antiprisms). See http://www.mathworld.com or the great graphics program
Poly (which can be downloaded from the web at http://www.peda.com/poly/)
for more information.
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Pedagogy

Fundamentally, all this activity is doing is giving students a chance to construct a
variety of polyhedra. That may not seem like much, but the pedagogical value of
such exercises should not be underestimated. There is a long tradition, probably
going back to the Greeks and maintained today by such luminaries as Magnus
Wenninger [Wen74] and George Hart [Har(01], of constructing polyhedra as a way
to develop understanding of spatial relations and geometry. In fact, many people
fail to really get a sense of what, say, the Platonic solids are until they actually
make one with their own hands. Holding a pre-made model is not enough! The
student needs to build one with her own hands to get a deeper sense of the nature
of these objects.

The business card unit offers one way to do this, and the fact that it uses such
an everyday object makes this surprisingly fun. Each unit covers two adjacent
triangle faces of the polyhedron under construction, so students need to keep track
of things like the degrees of the polyhedron’s vertices as they proceed.

Depending on their manual dexterity and three-dimensional visualization
skills, students will have very mixed success with this activity. Some will quickly
assemble the tetrahedron and octahedron, while others will need lots of help get-
ting the tetrahedron together. Having students working in groups can even things
out, where fast students will stop to help the slower ones along. This is all the bet-
ter anyway because the icosahedron is much easier for students to do in groups.

Students will be very unlikely to discover very many of the Johnson solids on
their own. Someone may come up with the triangular and pentagonal dipyramids,
but the others are just not very intuitive. Once students are convinced that there
are no other possibilities than the ones they've come up with, then it is time to
unveil some of the more complicated Johnson solids.

This is what the second handout is for, but this is entirely optional. If computer
projection facilities are available in class, instructors can project pictures of these
solids from the MathWorld web page or from the Poly program (as mentioned
previously). Or instructors can assign their students to find more polyhedra to
make with business cards on their own. With the web at their disposal, it is totally
reasonable to expect students to come up with the triangle-faced Johnson solids
for homework.

This activity can also be useful for reinforcing a variety of concepts in poly-
hedra or planar graph theory. Students in a math for liberal arts class are often
exposed to Euler’s formula V — E+ F = 2, for example, which can be verified
with these business card polyhedra.

On obtaining large supplies of business cards

Business cards make up a subfield of modular origami. Many other business card
units can be found by web searching. (Also see the Modular Menger Sponge activ-
ity in this book.) Those who delve into this area will discover that not all business
cards are the same. While they all have the same dimensions, the quality of the
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card stock can vary quite a bit. Some cards will have a glossy coating that may
crack when folded. Others may be ofa slightly less weight than standard and fold
more easily.

Obtaining lots of cards can sometimes be easy. Visit an office supply, photo-
copy, or printing store that prints business cards for customers and ask if they
have any discarded cards. Often printing errors or flaky customers result in boxes
of cards being left unwanted. Such stores are often happy to give these away.
Blank cards may also be purchased, but it can be fun to collect random cards to
see what the printing will reveal when folded. Business card folding enthusiasts
often collect cards from restaurants and businesses, sometimes sorting them by
color so that they may be used to artistic effect.

In fact, one can assign students to collect business cards of their own and bring
a supply of 10-20 cards with them to class. As long as you give them advanced
notice, this is entirely reasonable (although you'll still want a supply of cards on

hand to help those in need).



Activity 11
FIVE INTERSECTING TETRAHEDRA

For courses: geometry, math for liberal arts,
multivariable calculus

Summary

Students learn how to make a modular origami tetrahedral frame using Francis
Ow’s 60° unit. Then, they are challenged to, in groups, weave five such tetrahedra
together to make an origami version of the compound of five tetrahedra.

Content

Making one tetrahedral frame is not hard. But weaving five together in the proper
way is a big puzzle! To do so requires grappling with some unusual symmetries
in three dimensions that are based on natural properties of the dodecahedron.

As a possible follow-up, finding the optimal “strut width” for this model is a
challenging multivariable calculus problem. In fact, the only reasonable way that
I know of doing it is by making use of a computer algebra system, such as Maple
or Mathematica.

Handouts

(1) "Five Intersecting Tetrahedra” (2 pages) and “Linking the Tetrahedra To-
gether” (1 page) describe how to make the model.

(2) “What Is the Optimal Strut Width?” (2 pages) leads students through the
basic steps of the multivariable calculus problem. It is assumed that students
will be making use of some computer algebra system when working on this
handout.
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Time commitment

While the units are simple to make, there are 30 of them, so folding all the units
might take an individual over 30 minutes. This probably should not be done in
class unless students do them in groups. Making one tetrahedron is not so bad—
but f()ldi_ng the units and assembling them might take 30-40 minutes.
Constructing the whole model, once the units are made, would take another
30-40 minutes due to the sheer complexity of it. The multivariable calculus activity
would probably take a full 50 minutes, depending on the level of the students.



HANDOUT

Five Intersecting Tetrahedra

This origami model is a real puzzle! But first we'll start with the one tetrahedron
made from Francis Ow’s 60° unit [Ow86].

Francis Ow’s 60° unit =

This requires 1 x 3 paper. So fold a square sheet into
thirds and cut along the creases.

(1) Creaseinhalflength- (2) Fold the sides to the (3) At the top end, make
wise. center. a short crease along
the half-way line of

the right side.

(4) Fold the top left (5) ...like this.  Fold (6) Undo the last two

corner to the pinch the top right side to steps.
mark just made and meet the flap you
at the same time just folded.

make sure the crease
hits the midpoint of
the top. ..



(7) Now use the creases

made in step (4) to
reverse the top left
corner through to the
right.  This should
make a white flap
appear. ..

(8) ...like this.
the white flap under-
neath the right side

paper.

Tuck

Activity 11

(9) Now rotate the unit

180° and repeat
steps (3)-(8) on the
other end. Then
fold the whole unit
in half lengthwise
(to strengthen the

spine of the unit) and
you're done!

Locking the units together: Three units make one corner. Make sure to have
the flap of one unit hook around the spine of the other!

The lock should be fairly strong.
Make 6 units and form them into a tetrahedron!
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Linking the Tetrahedra Together

The five tetrahedra must be woven together, one at a time. The second tetrahedron
must be woven into the first one as it's constructed. That is, it’s not very practical
to make two completed tetrahedra and then try to get them to weave together.
Instead, make one corner of the second tetrahedron, weave this into the first one,
then lock the other three units into the second tetrahedron.

The first two tetrahedra make a sort-of 3D Star of
David, with a corner of one tetrahedron poking
through the side of the other, and a corner of the other
poking through a side of the one. In fact, when the
whole model is done every pair of tetrahedra should
form such a 3D Star of David form.

The third tetrahedron is the most difficult one to
weave into the model.

The figure to the right is drawn at a specific angle to
help you do this. Notice how in the center of the pic-
ture there are three struts weaving together in a tri-
angle pattern. If you look carefully, the same thing is
happening on the opposite side of the model. As you
insert your units for the third tetrahedron, try to form
these triangular weaves and use them as a guide. In
the finished model, there will be one of these triangu-
lar weave points under every tetrahedron corner.

These two types of symmetry—two tetrahedra making a 3D Star of David and
the triangular weave points—are the best visual tools to use when inserting the
units for the fourth and fifth tetrahedra. The pictures below also help.
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What Is the Optimal Strut Width?

The instructions for Francis Ow’s 60” unit have us start with 1 x 3 sized paper,
which gives us a unit thatis 1 x 1/12 in dimensions. In other words, if the side of
one of the tetrahedra is 1, then the width of the strut in the tetrahedral frame that
we make is 1,/12.

Is this the optimal strut width, or should we be using a wider or thinner strut
for a more ideal fit? In this activity you'll use vector geometry and calculus to
approximate the ideal strut width. This calculation is Very very hard to do by
hand, so you're better off using a computer algebra system to help.

The ideal strut width is the line segment L, shown to
the right. It is formed by the edges of two different
tetrahedra, which are line segments connecting cor-
ners 1 and v2 and the corners vz and ©v4 of the do-
decahedron. The coordinates for these vertices can
be found in standard packages in most computer al-
gebra systems, or you can use the coordinates below:

[ ]5=V53-+v5 [5+V5
o= 0 2 V10
2 5 11
= =4[2="5,0,4/5 - —=
B (\/ V5 \/2 w’%)
e [ 511 145 54415
T 2 25 2 '\ 10
2 5 11
=(-/1-=,-1,,/5 - —
" (\/ % \/2 wﬁ)

Our goal is to find /1 = the minimum distance between the two line segments
U102 and U304 (as shown above). Then, L can be determined from h since they're
sides of a 30°-60°-90° triangle.

Question 1: Find a parameterization F(t) = {x(t),y1(t),z1(t)} for the line in R3
that contains 7;72. Then, find a parameterization G(t) = {x2(t), y2(t), z2(t)} for
the line that contains 7374.
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Question 2: Now find a formula for the distance between an arbitrary point F(t)
on the first line and an arbitrary point G(s) on the second line.

Question 3: Now minimize the distance function you found in Question 2 to find
the length k. Hints: it might be easier to minimize the square of the distance
function to get 2. Also, an exact answer is too much to ask for. A decimal approx-
imation will do.

Question 4: So what is the ideal strut width L? How does it compare to our use of
struts that were 1/12 the side of a triangle?
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COMMENTS, SOLUTION, AND PEDAGOGY

Comments

History of the model. I conceived of making this model in 1996 while in gradu-
ate school at the University of Rhode Island. I had seen a Mathematica poster that
depicted this object, but the width of the frames looked too narrow, as if the model
would jangle in a loose tangle if it existed in reality. So I set out to make one via
origami. I found Francis Ow’s 60° unit ([Ow86]) to be perfect for this, especially
since it can be made with any frame thickness desired. At the time I guessed, figur-
ing that using 1 x 3 paper would work, giving edges of the frame that are 1 x 1/12
in dimensions. This is a little bit wider than the ideal, but it’s close enough for a
paper model. After I talked a crowd of my fellow graduate students into helping
me fold the units, we collectively struggled to put it all together, and the model
hung from the ceiling of the math department conference room for several years.

Once I saw that the model worked, I created instructions for it, posted them on
my web site, and mailed a copy of them to Francis Ow, who lives in Singapore. He
wrote back saying that he was surprised and delighted that such a complex model
could be made from his unit. Since then this model has become very popular in
origami circles, even being voted onto the British Origami Society’s list of “Top 10
Favorite Models” [Rob00].

Making the model. Many people find the Five Intersecting Tetrahedra (FIT)
model stunning to behold. Making one is very rewarding. It is up to instructors to
decide how to go about teaching and making this model. Some instructors might
want to build this object with their students for the first time, so that it'll be a
discovery experience for everyone. Others might be more comfortable making an
FIT themselves to become familiar with the process and the symmetries inherent
in the model. If you do this, be sure to reserve plenty of time for your own study
of this model. It is not easy to put together! Those who really want to challenge
themselves should fold all 30 units, using five different colors, and try to assemble
it using only a picture of the finished model (i.e., without the hints and figures on
the handout). The truly masochistic can try it using only one color.

Actually, making yourself try it without the aid of the handout is a very good
way to put yourself in the mindset of your students as they try to build this thing.
It gets across how valuable understanding the symmetry of the finished object is
when putting the model together.

Symmetries of the model. When looking at the model, it’s not hard to see that
the corners of the tetrahedra would form a dodecahedron if we drew lines connect-
ing nearby corners. There’s a reason for this: it is possible to find four mutually
equidistant corners in a dodecahedron. Thus, if we drew lines connecting these
corners, we’'d have a regular tetrahedron inscribed inside the dodecahedron. (See
the illustration below.)

However, the dodecahedron has 20 corners, and this number is evenly divisible
by four. This makes one suspect that you could inscribe five such tetrahedra inside
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a dodecahedron without using any corner more than once. This indeed works and

Thus, this model shares many symmetries with the dodecahedron. It has 120°
rotational symmetry about the axes connecting two opposite tetrahedron corners
(i.e., two opposite vertices of the dodecahedron), 72° rotational symmetry about
the axes through points where five tetrahedra meet (i.e., through the midpoints
of two opposite faces of the dodecahedron), and 180 rotational symmetry about
the axes through the “midpoint” between two nearby tetrahedron corners (i.e.,
the midpoint of an edge of the dodecahedron). These rotational symmetries form
a group, the rotational group of the dodecahedron, which is isomorphic to the
alternating group As.

But the dodecahedron has reflection symmetries as well, and these are not sym-
metries of the FIT. This is because the FIT comes in two versions that are mirror
reflections (a.k.a. enantiomorphic, a.k.a. chiral [Wei2]) of each other. (See below.)
Indeed, if a whole classroom of students make their own FITs, then some of them
will surely be enantiomorphic to each other. This can provide an opener for a class
discussion about mirror symmetries in R?, which are often harder to visualize than
those in RZ.
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Solution to the Optimal Strut Width Problem

As the instructions state, this problem really needs to be done with a computer
algebra system. However, I should clarify that there probably is a more elegant
method for computing the optimal strut width than the one I outline in this hand-
out. I chose this method because, for one, I don’t know of another way that gives
a better solution. Also, this method utilizes a number of techniques that are stan-
dard in multivariable calculus classes, like parameterizing a line in R? and findi_ng
the extrema of a function of two variables. However, while an exact solution to
this problem can be found, it is horrendous. Mathematica returns a gargantuan
expression that fills several screens, and if it can be simplified, Mathematica is
unable to do it. But a numerical approximation is all that is needed and is more
practical in this situation anyway.

My thoughts on making this handout were centered around the fact that this
is a very challenging problem. In fact, if instructors would like to use this prob-
lem as an advanced project for, say, a capstone or project-driven multivariable or
geometry course, then it might be best to keep this handout hidden and let such
students devise their own way of doing it. Therefore, 1 developed the handout
with the purpose of giving students a chance to see some applications of multi-
variable calculus material. In doing so, I wanted the problem to be doable for
most students.

However, the handout does intentionally leave a number of things unexplained.
Namely, while the diagrams suggest how the length L and the distance h are re-
lated, it can take quite a bit of head-scratching and visualization to “get it.” It is up
to instructors whether or not they want to have students describe this in detail in
whatever written work is handed in for the activity.

Ideally, the whole activity could be done and turned in as a Maple or Mathe-
matica notebook, with text written in between commands to explain what they are
doing.

Question 1. Written as a vector function, the two lines can be most easily ex-
pressed by
F(t) = (v3 —v1 )t +v1, and G(t) = (vg — v3)t + v3.

Simplifying in Mathematica, this gives us

_ —3+V5) (=1+1)
SRR STERE a0, 2) ,

\/5+\/§+(\/25—11\/§—\/5+\/§) ¢
7 ,

and you can now see why the exact final answer will be so horrendous (and why
I'm not bothering to write the expression for G(t)).
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Question 2. It is easier to use the square of the distance between an arbitrary
point F(t) on 9173 and an arbitrary point G(s) on v37;. Computationally, this can
be expressed with a dot product:

H(s,t) = (dist(F(t),G(s)))* = (F(t) — G(s)) - (F(t) — G(s)).
This, of course, is just mimicking the standard distance formula.

Question 3. The function H(s, t) is quadratic in s and f, and graphing it shows a
clear concave up parabolic bowl. (See below.)

The partial derivatives d/dt and d/9s of this function are linear in s and f, but
their coefficients are, again, very yucky quadratic surds. If welet A = /470 — 210 V5,

B = /70— 30v/5,C = /5 (9—4\/5),andD= 25 + 5/5, then

a—f:%(—4{J+16\/§+A—|—B—2C—2(2D—|—1{J+A+B)s+(D—B+6C) t)

dH 1
5=z ((D— B+6C)s—2(35—14\/5—1—3C+(—55—|—17\/E;—|—B)t)) .
t 5
Setting these equal to zero and numerically solving gives s’ 72 0.281269 and t' =~

0.459267. This gives us

h=\/H(s, ) ~ 0.129065.

Question 4. Thus L = 0.129065/(1/3/2) ~ 0.149031. This is, of course, scaled
according to the dodecahedron vertex coordinates that we used for v;-v4. If we
want to assume our tetrahedra have side length 1, then we must divide by the
length of 7703:

h
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Now, 1/12 = 0.083333. .., so when starting with 1 x 3 paper, we are off by about
0.00626106. This may seem impressive, but since it's a unit-less measure, it proba-
bly won't be all that meaningful for students.

Encourage students to assume that they are starting with 1 x 3 paper that is 10
inches on the long side. Then our Ow 60° units will make a tetrahedral frame with
strut width 0.83333 inches. An ideal width would be 0.770723 inches, so we're off
by only 0.0626 of an inch. That’s not bad at all!

If, however, we were to use 1 x 3.2 dimension paper, we'd get even better
accuracy. This is very important for any woodworkers or metal artists who might
be thinking of making such an object out of a different medium that would be
more sensitive to accuracy.

Other methods. There are other ways to approach this problem. Don Barkauskas
(University of Arizona) suggests a way that relies only on vector methods. Use the
cross product to find the unique direction vector v mutually perpendicular to the
two lines U177 and ©30;. Then, find the equation of the plane containing v and
U102 and the equation of the plane containing v and 73v4. The intersection of these
two planes will form a line L. The length of the line segment between the point
where L intersects 717, and the point where L intersects 7374 will be the minimum
h. While this avoids calculus, the computations will still be quite horrendous.
Another way to avoid calculus proposed by Kyle Calderhead (Illinois College)
is to also determine the vector mutually perpendicular to 7172 and U374, except
this time make it a unit vector. Call this vector v,. (Note that, using the notation
of the first solution presented, this can be found by taking the cross product of
F(1) — F(0) and G(1) — G(0) and then normalizing.) Then, take the dot product
of v, and a vector w pointing from a point on 7,7, to a point on v304. (w = F(t) —
G(s) for any values of s,t.) This dot product will give the length of w projected
onto v, which will be the minimum distance between the two lines 7;7; and ©374.

Pedagogy

As mentioned previously, instructors should practice making the FIT model them-
selves, perhaps even experimenting with different sizes and weights of paper, be-
fore expecting students to do it. Otherwise, it is entirely up to you how to incorpo-
rate this into various classes. A math for liberal arts class will find this model very
challenging, and it should be viewed as a difficult puzzle that also showcases some
complex polyhedral structures and symmetries. Depending on the skills of your
students, it might be better to only expect them to make one tetrahedral frame in
class, and then unveil your own model of the full FIT. Motivated students can then
take it upon themselves to make one themselves, perhaps for extra credit.
Students in an undergraduate geometry or multivariable calculus course should

be able to do the entire activity. Structuring the activity is entirely up to you. Some
people have had much success by forming students into groups of three or four,
trying to make sure that each group has at least one good folder and one person

with solid math/visualization skills. When Kyle Calderhead used this approach,
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he commented, “In most groups, the ace folder was not the ace mathematician, so
it seemed like most everyone felt like they had something to contribute.”

Although the handout focuses on a minimization solution, this activity could
he revisited multiple times in a multivariable calculus course to see how different
tools could be used. For example, if multivariable optimization is done early, this
could be the first solution discussed. Then, when dot and cross products are intro-
duced, those solutions could be investigated. Each of these solutions does require
software like Maple or Mathematica to perform the calculations, but this activ-
ity offers a very hands-on application of some potentially confusing multivariable
calculus topics.






Activity 12
MAKING ORIGAMI BUCKYBALLS

For courses: geometry, graph theory

Summary
This activity has multiple parts.

(a) Students learn the PHiZZ unit and use 30 units to make a dodecahedron
with either a proper 3-edge-coloring or a symmetric 5-edge-coloring.

(b) Students find a Hamilton circuit on the graph of the soccer ball (Cgy Bucky-
ball, truncated icosahedron) and use it to plan a proper 3-edge-coloring.
Then, they (perhaps working in teams) make a 90-unit PHiZZ version.

(c) Students use Euler’s formula and counting tricks to prove that every Bucky-
ball has exactly 12 pentagons. A much bigger project is to classify all spheri-
cal Buckyballs and develop a formula for the number of PHiZZ units needed
to make them.

Content

In a graph theory course PHiZZ units can be a way to give students hands-on
experience with 3-edge colorings. Hamilton circuits, edge colorings, Euler’s for-
mula, and counting techniques are standard topics in undergraduate graph theory
courses, and students are usually very eager to (either individually or by work-
ing together) make large Buckyballs. Coxeter has a nice classification of spherical
Buckyballs that does not seem to be very well-known, which offers a very nice way
to show how subjects like graph theory, combinatorics, polyhedra, and vector ge-
ometry can be tied together. This material can easily take up a week or more of a
graph theory course, but instructors can decide how much or how little they want
to do. Also, this activity uses a lot of standard material, so it might be worthwhile
to spend time on PHiZZ units as a way to introduce several concepts.

Handouts

There are three handouts relating to the three parts of this activity.
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Time commitment

For the first handout, students can fold 3-5 units and learn how to lock them to-
gether in 20 minutes. Folding all 30 units might be best done outside of class. The
speed of the second handout will depend on how much experience your students
have with planar graphs; students familiar with them will take only 15 minutes,
working in groups, to finish this, while other students may need 30—40. The third
handout will take about 30 minutes.



HANDOUT

The PHiZZ Unit

This modular origami unit (created by Tom Hull in 1993) can make a large number
of different polyhedra. The name stands for Pentagon Hexagon Zig-Zag unit. It is
especially good for making large objects, since the locking mechanism is strong.

Making a unit: The first step is to fold the square into a 1/4 zig-zag.

When making these units, it's important to make all your units exactly the
same. It’s possible to do the second step backwards and thus make a unit that's a
mirror image and won't fit into the others. Beware!

Locking them together: In these pictures, we're looking at the unit “from
above.” The first one has been “opened” a little so that the other unit can be slid
inside.

Be sure to insert one unit in-between layers of paper of the other. Also, make
sure that the flap of the “inserted” unit hooks over a crease of the “opened” unit.
That forms the lock.

Assignment: Make 30 units and put
them together to form a dodecahedron
(shown to the right), which has all pen-
tagon faces. Also use only 3 colors (10
sheets of each color) and try to have no
two units of the same color touching.




HANDOUT

Planar Graphs and Coloring

Drawing the planar graph of the polyhedron can be a great way to plan a coloring
when using PHiZZ units. To make the planar graph of a polyhedron, imagine
putting it on a table, stretching the top, and pushing it down onto the tabletop
so that none of the edges cross. Below is shown the dodecahedron and its planar

graph.

Task 1: Draw the planar graph of a soccer ball. Make sure it has 12 pentagons and
20 hexagons.

Task 2: A Hamilton circuit is a path in a graph that starts at a vertex, visits every
other vertex, and comes back to where it started without visiting the same vertex
twice. Find a Hamilton circuit in the planar graph of the dodecahedron.
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When making objects using PHiZZ units, it's always a puzzle to try to make it
using only 3 colors of paper with no two units of the same color touching. Each
unit corresponds to an edge of the planar graph, so this is equivalent to a proper
3-edge-coloring of the graph.

Question: How could we use our Hamilton circuit in the graph of the dodecahe-
dron to get a proper 3-edge-coloring of the dodecahedron?

Task 3: Find a Hamilton circuit in your planar graph of the soccer ball and use it
to plan a proper 3-edge-coloring of a PHiZZ unit soccer ball. (It requires 90 units.
Feel free to do this in teams!)



HANDOUT

Making PHiZZ Buckyballs

Buckyballs are polyhedra with the following two properties:
(a) each vertex has degree 3 (3 edges coming out of it), and
(b) they have only pentagon and hexagon faces.

The PHiZZ unit is great for making Buckyballs because you can make pen-

tagon and hexagon rings:

These represent the faces of the Buckyball. But when making these things, it
helps to know how many pentagons and hexagons we’'ll need!

To the right are shown three Buckyballs: The dodecahe-
dron (12 pentagons, no hexagons), the soccer ball (12 pen-
tagons, 20 hexagons), and a different one. (Can you see
why?)

Question 1: How many vertices and edges does the do-
decahedron have? How about the soccer ball? Find a for-
mula relating the number of vertices V and the number

of edges E of a Buckyball.

Question 2: Let F5 = the number of pentagon faces in a
given Buckyball. Let Fg = the number of hexagon faces.
Find formulas relating

(a) Fs5, Fs, and F (the total number of faces). (Easy!)

(b) F5, Fs, and E. (Harder.)
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Question 3: Now use Euler’s formula for polyhedra, V — E + F = 2, together
with your answers to Questions 1 and 2, to find a formula relating F5 and Fg, the

number of pentagons and hexagons.

Question 4: What can you conclude about all Buckyballs?
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SOLUTION AND PEDAGOGY

Handout 1: The PHiZZ Unit

Iinvented the PHiZZ unit in 1993 while in graduate school. My aim was to design
a unit that had a strong enough locking mechanism to support the construction
of very large polyhedra. The result worked—a full 1/4 of the paper is devoted
to each lock, and it had the added bonus of forming “rings,” which made it a lot
easier to see the faces of the underlying polyhedral structure. However, I felt that
the unit did not support making triangle and square rings, since these forced the
paper to buckle and, when certain types of origami paper were used, fall apart.
Thus I had to restrict myself to only pentagon and hexagon faces, which created
the name Pentagon-Hexagon Zig-Zag Unit (or PHiZZ for short). I later discovered
that heptagon and larger faces could be made, but that these would introduce
negative curvature. See the Making Origami Tori activity for information on how
to incorporate this into models.

Since the heart of this activity is centered around folding PHiZZ units and
putting them together, instructors should spend a substantial amount of time be-
forehand making and playing with PHiZZ units themselves. Some people, faculty
and students alike, find the locking mechanism difficult to comprehend from the
diagrams on the handout. Be sure to pay close attention to the drawings and their
depiction of how the flaps of one unit are to be inserted between the layers of
another. At the very least make 30 units to form the dodecahedron, and use the
planar graph to get a 3-edge-coloring. Better preparation would be to fold 90 units
to make the soccer ball (a.k.a. Buckminster fullerene, a.k.a. truncated icosahedron),
which really is quite an impressive model to behold. Follow the handout to use
a Hamilton circuit to generate a proper 3-edge-coloring. Such models make great
decorations to hang in one’s office, by the way!

I find that the ideal paper to use for these units is “memo cube paper” that can
be found in office supply stores. Make sure to avoid Post-It notes, though, as the
sticky strip will get in the way of the unit's functionality. If you can find it, buy
memo cube paper that comes in its own plastic box /holder. Such paper is much
more accurately square than other memo cube paper. (And non-square paper can
be slightly problematic in making accurate units.)

Normal origami paper is useful as well, although it needs to be cut down to
smaller squares. For example, when making very large Buckyballs, say with 500
or more units, using 3 inch memo cube paper might result in a model too large
for one’s dorm room. Instead try cutting normal origami paper (the kind that is
colored on one side and white on the other) into 2 inch or 2.5 inch squares. This
tends to be much more manageable.

Accuracy in the units does help, and some effort will have to be made in class
to make sure that the students’ units are decent. They should not look like they
were folded by someone wearing mittens.
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But more importantly, notice that the units can come in left- and right-handed
versions. If you follow the instructions carefully, all your units will be right-
handed and will lock together properly. But once you get the hang of the folds
and start making them without looking at the instructions, it can be easy to acci-
dentally make a unit that is a mirror-image of the others (i.e., left-handed). Such a
unit will not be able to lock with other, opposite-handed units. So make sure your
students are aware of this pitfall!

Once your class folds a few units and learns how to lock them, you may find
your students making piles of vertices—three units locked to form a pyramidal
vertex—hoping to then join them together to make the dodecahedron. This is a
bad approach. It is very difficult to join three vertex clusters together to make a
new vertex in-between them. Anyone who tries this will become frustrated and
have to take their vertices apart. The best way to make things out of PHiZZ units
is to form one vertex and then keep adding onto it with more units, building your
polyhedron one vertex at a time. Suggesting this to students can eliminate a lot of

headaches.

Handout 2: Planar Graphs and Coloring

The first task here is to draw the planar graph of a soccer ball, otherwise known
as the truncated icosahedron. Students usually enjoy these kinds of activities a
lot, but often they need some help on how to do them. Demonstrating how the
planar graph of the dodecahedron can be made can help; start by drawing a pen-
tagon, then notice that pentagons must be drawn around it, and each vertex must
have degree 3, etc. For the soccer ball, also start with a pentagon face, and draw
hexagons adjacent to every side of the pentagon, and work your way out. En-
courage students to make their drawings as symmetric as possible, as below, for
example.

Then, students are asked to consider Hamilton circuits on these graphs. The
reason for this is because Hamilton circuits can provide an easy way to generate
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a proper 3-edge-coloring on the graphs. Here’s how: once you have a Hamilton
circuit, color the edges on the circuit with two colors, alternating as you go along.
One can prove that on any cubic (all vertices degree three) graph, we must have an
even number of vertices. (See the second handout solution for a proof.) Since the
Hamilton circuit visits every vertex exactly once, this means our Hamilton circuit
will have an even number of edges, and thus we will be able to 2-color the circuit
properly. Then we can color all the remaining, non-circuit edges with the third
color, and bingo! We have our proper 3-edge-coloring,.

There are many different ways to find a Hamilton circuit on the dodecahedron
and the soccer ball. Below are shown one example of each.

There is a lot of more interesting graph theory to explore here. For example,
back in the 1890s Tait tried to use the concept of Hamilton cycles to prove the Four
Color Theorem (which was then still a conjecture). This is done through an elegant
method (due to Tait) of transforming a 4-face-coloring of a planar graph to a 3-
edge-coloring of a cubic planar graph. Tait’s mistake, however, was in assuming
that all 2-connected planar graphs have a Hamilton circuit. Indeed, in the 1930s
Tutte found an example of such a graph that has no Hamilton circuit. See [Bar84]
and [Bon76] for more details.

Handout 3: Making PHiZZ Buckyballs

This handout would be good to use a class period (or so) after first encountering
the PHiZZ unit and Handout 1. The students should have made a PHiZZ dodec-
ahedron and perhaps be on their way towards making a soccer ball. Envisioning
larger and larger Buckyballs should not be hard for students. Just remind them
that every geodesic dome that they've ever seen is actually a large Buckyball of
some sort. Find a picture of the Epcot Center’s Spaceship Earth if you really want
to drive the point home.

(Actually, most geodesic dome structures that you see are duals of a Buckyball.
It your class has explored the concept of planar duals of graphs, this will be an
interesting example to explore; Buckyballs have all vertices of degree 3, while their
duals, geodesic spheres, have all triangle faces. Buckyballs have only pentagon
and hexagon faces, while geodesic spheres have only vertices of degree 5 and 6.)
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The three Buckyballs shown on the handout are the dodecahedron (a “triv-
ial” Buckyball), the soccer ball (which is the classic carbon-60 molecule, which
chemists often call a Buckminster Fullerene), and a third, bigger Buckyball that
students will be unfamiliar with. This third one is fundamentally different from
the soccer ball because, as you can see, it has vertices where three hexagons meet;
all vertices of the soccer ball have a pentagon meeting two hexagons. Inquisi-
tive students, and perhaps you yourself, will find this puzzling—if three regular
hexagons meet, we get a flat plane with no curvature. So how could this make
a polyhedron? This reasoning is correct, and it proves that the hexagons in this
object are not regular. In order for this arrangement of pentagons and hexagons
to form a polyhedron, the hexagons need to be a bit irregular. (This is why the
image on the handout, generated using Mathematica, looks a little odd.) Luckily,
the PHiZZ unit is flexible enough to make such hexagons slightly irregular, so if
you or your students try making this Buckyball, you won’t notice the difference at

all.

Question 1. After playing with the PHiZZ unit for a while, students will have
everything that they need to figure out how many vertices and edges a dodecahe-
dron and the soccer ball have. Make the students count these things themselves,
and be firm about this! The whole point of having the students construct origami
polyhedra is for the hands-on experience to build conceptual understanding of the
objects that they build. Asking these kinds of questions brings such concepts to the
forefront, but students need to discuss and wrestle with the questions themselves
to get it.
In any case,

vertices | edges
dodecahedron 20 30
soccer ball 60 90

This suggests the equation V = 2E/3. But this formula can be proven for Bucky-
balls in general: Imagine that we take any Buckyball and visit each vertex, count-
ing the number of edges coming out of that vertex. Of course, we'll count three
edges at each vertex, counting a total of 3V edges. But each edge will have been
counted twice! This is because each edge connects two vertices, so our visits to
each of those vertices will have counted that edge. Thus we have 3V = 2E.

Notice that this immediately proves that every Buckyball has an even number
of vertices (or any 3-regular graph, for that matter).

I want to emphasize how useful this type of counting argument is for studying
the combinatorics of polyhedra. In fact, we'll be using it again in the next question.

Question 2. In part (a) all I'm looking for is F = F5 + Fs. Yes, it’s that easy.

Part (b) requires a counting argument similar to the one in Question 1, except
that this time we'll visit each face of the Buckyball. We're still counting edges, and
this time we count the edges that surround each face that we visit. All the pen-
tagon faces will give us 5 edges, and so we'll count 5F; edges from the pentagon
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faces. From the hexagons we will count 6F, edges. And once again we will have
counted each edge twice (since each edge borders two faces)! Thus,

5F; + 6F = 2E.

Question 3. All the equations that we have should do something for us here, and
there are several ways to get the desired result. Following the lead with Euler’s
formula, let's use V = 2E /3 to eliminate the V variable:

1
F—-E=2.
3
Now, we want a formula involving Fs and Fs, so let's use F = F5 + Fs and 2E =

5F5 + 6F;, to obtain an equation with only these two variables:

1 (5F5 +6F\
FS”‘@(?)—Q

= 6F; + 6F; — 5F5 — 6F; = 12
= F =12,

Wow! The number of hexagons just dropped out and gave us a fixed number of
pentagons! So Question 3 is sort of a “trick” question, in that the formula involving
F5 and Fg doesn’t contain Fy at all.

But this does make Question 4's answer clear: Every Buckyball has exactly 12
pentagon faces, no more, no less.

Follow-up ideas

That F5 = 12 always is pretty surprising, and it can lead into much more exten-
sive studies of Buckyball and geodesic sphere structures. Other Buckyballs can
be made by drawing planar graphs with all vertices of degree three, 12 pentagon
faces, and some number of hexagons. For example, you can challenge students to
come up with as many cubic graphs with 12 pentagon faces and only two hexagon
faces as possible. (These can then be made using how many PHiZZ units?) Is it
possible to have only one hexagon face in such a graph? (The answer is, “No!”)

Other facts can be discovered by examining such models. Beta-tester Jason
Ribando of the University of Northern Iowa notes, “It may be worth noting in the
instructor’s notes that the pentagon holes on parallel faces of the PHiZZ dodeca-
hedron are aligned, unlike the Platonic solid version. It could make for a good ex-
ercise to explain why!” 1993 HCSSIM student Gowri Ramachandran noticed that
when we properly 3-edge-color the dodecahedron, faces on opposite sides of the
polvhedron will have similar colorings (i.e., if one face has, say, two yellow edges,
two pink edges, and one white edge, then so will the opposite face). Does this
persist in larger spherical Buckyballs? Clearly there are many questions to explore
here, making this especially fertile ground for student research.

Students interested in chemistry might like making PHiZZ unit objects that
model what nanotechnology scientists are exploring. For example, consider the
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images found on Richard E. Smalley’s web page at Rice University, htt‘p:/ / smalley.
rice.edu/ smalley.cfm?doc“id:4866. Smalley was one of the people who won a
Nobel Prize for their work on discovering the carbon-60 (Buckminster Fullerene)
molecule, and his newer research in Bucky tubes may end up revolutionizing su-
perconductivity.

Geodesic dome structures are spherical, however. To make a Buckyball as
spherical as possible, we need to think of the 12 pentagons as being evenly dis-
tributed with hexagons in between them. In fact, we can think of each pentagon
as corresponding to a vertex of the icosahedron, and each triangle face of the icosa-
hedron will represent three pentagons and the hexagons nested in between them
on the spherical Buckyball. (See the picture below.) These triangle “tiles” can
uniquely determine and enumerate spherical Buckyballs as well as explain their
symmetry group [Hul05-2].

Coxeter [Coxe71] presents a classification of such Buckyball duals using trian-
gle tiles on the triangular lattice, and this work leads to explicit formulas for the
number of vertices, edges, and faces of any spherical Buckyball. To give a brief
summary, the idea is to consider the dual of such tiles, which would give a trian-
gular “tile” of a geodesic sphere. These can be completely classified by taking three
mutually equidistant points on the triangular lattice. That is, consider the lattice
formed by linear combinations of the vectors v1 = (1,0) and v, = (1/2, \/§/2)
The multiples of v1 will form the p-axis of this lattice and multiples of v will form
the g-axis. Let one of the corners of our triangle tile be (0, 0) and let another be an
arbitrary point (p,q) on the lattice. This will determine the third point needed to
make the tile, which can be found by rotating (p, ) about the origin by 60°. An
example in which we take (p,q) = (2,1) (which is really the point 2v; + v, on the
Cartesian plane) is shown below.

The nice thing about this approach is that we can compute the area of these
triangle tiles. If we normalize this area so that the area of one triangle on the
lattice equals one, then we only need to count how many unit triangles are in the
tile to calculate its area. The tile’s symmetry will guarantee that any triangles on
the edge of the tile that are cut-off will have a matching pair somewhere else. (This
is demonstrated by the numbers in the triangles in the figure below.) Therefore,
this normalized area will always be an integer. Coxeter shows, and it can be fun
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» p-axis

to prove yourself, that the number of triangles in a triangle tile generated by the
point (p,q) will be the quadratic form p? + pgq + ¢°.

Thus, if we use a (p, q)-tile to make a geodesic sphere, we'll be placing one tile
on each face of an icosahedron. Thus, the number of triangle faces on such a sphere
will be 20(p? + pq + ¢%). The dual will be a spherical Buckyball with this same
number of vertices. Since 3V = 2E, this means that the number of ed gesin such a
Buckyball, and thus the number of PHiZZ units needed, will be 30(p* + pq + 7).

The largest such Buckyball that ['ve made requires 810 PHiZZ units, made from
a (3,3)-tile. Pictures can be found at http://www.merrimack.edu/~thull/gallery/
modgallery.html.



Activity 13
MAKING ORIGAMI TORI

SSbasuecne

For courses: geometry, graph theory, topology

Summary

Students who have already made some PHiZZ unit models (at least the dodec-
ahedron) are asked to try making a PHiZZ unit torus. This leads to discussions
of positive versus negative curvature and the fundamental domain of a torus. To
help plan their torus designs, the combinatorics of “Bucky tori” are studied.

Content

This can make a great introduction to the topology of toroidal surfaces. It also
offers a chance for graph theory students to get their hands dirty with graphs of
surfaces other than the plane. The combinatorial study uses Euler’s formula for
the torus, V — E + F = 0, to prove things such as every three-valent toroidal graph
with only pentagon, hexagon, and heptagon faces must have an equal number of
pentagons as heptagons.

This is a continuation of the Making Origami Buckyballs activity, although all
it really requires is the first handout from that activity.

Handouts

There are three handouts:

(1) Explores making bigger PHiZZ unit rings (with negative curvature).
(2) Explores drawing toroidal graphs on a fundamental domain.
(3) Explores Euler’s formula on orientable surfaces of genus g. This leads to

finding relationships between the number of pentagons and the number of
n-gons in “Bucky tori.”

139
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Time commitment

The only time sink for the first handout is in folding the units needed to make the
rings. If these are made in advance, this will only take 15-20 minutes. The second
handout only involves drawing toroidal graphs. It takes 10-15 minutes for the first
page, but the second page is a more extensive project (actually making a PHiZZ
torus). The third handout has many parts and can take students 40-50 minutes to
do it all (although parts can be saved for homework).



HANDOUT

Bigger PHiZZ Unit Rings

This handout asks you to experiment with making larger “rings” using PHiZZ
units.

~J

Activity: Make a heptagon or octagon ring out of PHiZZ units (it'll require 14 or
16 units, so feel free to do it in groups). This will be challenging: How can you
make the ring close up? Do not force any extra creases in the units! They should
go together just like normal.

Question: Compare what a pentagon ring, a hexagon ring, and a bigger ring (like
a heptagon or octagon ring) look like.

Specifically, imagine these rings lying on a surface. What kind of surface would
the pentagon ring be lying on?

How about a hexagon ring?

How about a heptagon or octagon ring?

So, if you were to make a torus (i.e., a doughnut} using PHiZZ units, where on
the torus might you place your pentagons, your hexagons, and your bigger-gons?



HANDOUT

Drawing Toroidal Graphs

When planning a PHiZZ unit torus model, it can be hard to visualize what you're
doing because you can't just draw the planar graph of the structure like you can
with, say, Buckyballs.

But there is a way to flatten a torus so that we can draw graphs on the torus
using pen and paper. The idea is shown in the picture below. You imagine making
two perpendicular cuts on the torus surface and then “unroll” the torus into a
rectangle. This is called the fundamental domain of the torus.

cut

—» gets glued to—=

== AR, gets glued to
el

—-

A torus The Fundamental Domain of the torus

cut along the dotted lines

The idea in the fundamental domain is that any edge you draw that hits the
boundary must come back on the other side. Thus a graph drawn on the torus, like
the one shown above, can be represented on the fundamental domain by making
some edges “wrap around” from top to bottom and from left to right.

Activity: Draw the graph of the square torus (shown below right) on a fundamen-
tal domain.

1
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You now have what you need to start designing your own PHiZZ unit torus.
Just start with the fundamental domain of a torus and try to draw a graph on it

that has
(1) all vertices of degree 3 and
(2) only pentagon, hexagon, or higher faces.
(Square and triangle faces don’t work very well with the PHiZZ unit.)

Unfortunately, making PHiZZ unit tori can take a lot of units. People have
made ones using hundreds of units. But, they can be made with a more reasonable
number. Below is a torus, designed by mathematician sarah-marie belcastro, that
requires 88 units. It's made from a small pattern (below left, in the dotted box)
that is repeated four times on the fundamental domain (below right). It uses only
pentagon, hexagon, and octagon faces.

SR nests

You can make the above torus or try designing your own. You might be able to
design a smaller one by using larger polygons, like 10-gons, instead of octagons.

Advice: When making such a torus, make the larger, negative curvature polygons
on the inside rim first. This may seem hard, but it’s a lot easier to do them at the
beginning than waiting until the end. Once you have the inner rim in place, it's a
lot easier to then make the hexagons and pentagons.



HANDOUT

Euler's Formula on the Torus

Question 1: Below is shown a square torus. What does Euler’s Formula,
V —E+F,give for this polyhedron?

Question 2: How about for a 2-holed torus?

Question 3: We define the genus of a polyhedron to be the number of “holes” it
has. (So a torus has genus 1, a two-holed torus has genus 2, an icosahedron has
genus 0, etc.) Find a generalized Euler’s formula for a polyhedron with genus g.
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Properties of Toroidal “Buckyballs”

Now that you know Euler’s Formula for the torus, we can learn some things that
will help you plan making tori using PHiZZ units.

Question 4: Suppose that we make a torus using PHiZZ units and only making
pentagon, hexagon, and heptagon (7-sided) faces. Find a formula relating F5 (the
number of pentagon faces) and F; (the number of heptagon faces).

Hint: Remember that we still have 3V = 2E. Use the same techniques that we
used to prove that all Buckyballs have only 12 pentagon faces.

Question 5: Suppose that we made a PHiZZ unit torus using only pentagon,
hexagon, and octagon faces. Find a formula relating the number of pentagon and
octagon faces.

Question 6: Can you generalize these results?
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SOLUTION AND PEDAGOGY

This activity really needs to be preceded by the Making Origami Buckyballs activ-
ity. For one thing, that’s where you'll find instructions for the PHiZZ unit to pass
out, and no one can be expected to make origami tori from PHiZZ units without
exploring spherical models (like Buckyballs) first. Also, many of the counting ar-
guments used in the torus activities (especially in the Euler’s Formula on the Torus
handout) are similar to those developed in the Buckyball activities.

As with the Buckyball activity, instructors will have to spend some time mak-
ing and experimenting with PHiZZ unit tori on their own. This can involve a
significant time commitment, as even small PHiZZ tori come close to 100 units.
I recommend making belcastro’s example in the second handout that requires 88
units. However, you can make this smaller; the example in the handout uses four
copies of the basic structure. You can instead use only three, and this will require
only 63 units. But this version is much harder to put together, since this puts a lot
more tension on the units.

Below is a PHiZZ torus of my own design. The basic structure uses decagons
and three copies of itself to complete the torus. It requires 81 PHiZZ units.

-

One tip when making these is to build the ring of large “polygons” first, which
will be the inside part of the torus surface. This is where all the negative curvature
comes into play, and it’s the hardest part to conceptualize and execute. Once that
is put together, adding the hexagon and pentagon polygons will be much easier.
(And as with the Buckyballs, putting in the last units is always tricky, but it's a lot
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easier to do as part of a pentagon or hexagon on the outside rim of the torus than
on the inside.)

Making PHiZZ unit tori can be immensely satisfying. Students may, perhaps,
have made cardboard polyhedra before, which can mirror the construction meth-
ods used in making modular origami polyhedra. But having a chance to construct
an actual torus is much more rare, and this activity offers an opportunity for stu-
dents to develop substantial intuition about the types of polygons and curvature
elements that must come together to make a torus.

Handout 1: Bigger PHiZZ Unit Rings

This activity is only meant to get the students to explore what took me many years
of playing with PHiZZ units to discover: You can make rings larger than hexagons,
but they induce negative curvature! When trying to make such rings for the first
time, it may seem impossible. Once you get enough units in place for a hexagonal
ring, it doesn’t seem like any more will fit. But if you allow the ring to twist in
space, more sides can be inserted, giving us negative curvature.

Thus the answers to the questions asked on the handout are

e a pentagon ring could lie on the surface of a dome or sphere,
e hexagon rings are flat, and thus can lie on a flat plane,

¢ heptagon and larger-gons can lie on a saddle point surface, like a hyperbolic
paraboloid or PringlesTMchip surface,

¢ and the pentagons will have to go on the outer part of the torus, where positive
curvature exists. The heptagon, octagon, or larger rings will need to be on the
inner part, where there’s negative curvature.

Handout 2: Drawing Toroidal Graphs

This handout introduces the concept of the fundamental domain of a torus as used
for the purposes of drawing toroidal graphs. If students have already seen this
concept, then all the better. The basic nature of the first page of this handout would
make it suitable in, say, a rubber-sheet topology course soon after the fundamental
domain concept was introduced. This is because actually drawing toroidal graphs
on a fundamental domain is a great way to solidify the concept.

The square torus graph is shown below.

-

Y
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The remainder of this handout asks students to try making “Bucky tori” out
of PHiZZ units. Following the belcastro design given is challenging, and since it
requires a large number of units, students could be encouraged to work together
to fold the units. I should emphasize, however, that this modular origami project
is difficult. Students who haven’t spent much time making spherical PHiZZ unit
structures will find making PHiZZ tori nearly impossible. On the other hand,
making these tori can be so satisfying and educational that struggling through the
tricky mechanics of putting it together can be very worthwhile.

An easier (perhaps) project is for students to merely design toroidal graphs
that could be made using PHiZZ units, like the belcastro example given. Giving
constructive guidance to students for this kind of task takes some practice. I've
found it best to let the students try it on their own for a while and then check how
they're doing, making sure that all their vertices have degree three, all their faces
are pentagons or larger, and all edges that cross the boundary of the fundamental
domain enter again at the appropriate spot.

It's very easy to design toroidal graphs with only pentagon, hexagon, and
higher faces that are too small to be made from PHiZZ units, but experimentation
on making smaller and smaller PHiZZ tori should be encouraged. At the 2000
Hampshire College Summer Studies in Mathematics, sarah-marie belcastro and I
challenged our students to do just this, and the resulting “Torus Wars” resulted in
some excellent designs requiring less than 100 units.

Of course, very large tori can be designed as well. The largest that I've made
uses 660 PHiZZ units and was on display for several years at the Origamido Studio
in Haverhill, MA. As with large Buckyballs, constructing such large objects can be
the goal of student group projects.

Handout 3: Euler's Formula on the Torus

This handout mirrors the combinatorial methods used in the Buckyball activity to
prove that all Buckyballs have exactly 12 pentagon faces. Similar results can be
found for “Bucky tori,” where we use only pentagon, hexagon, and some higher
n-gon faces. For example, if using only pentagons, hexagons, and heptagons, stu-
dents can prove that there must be the same number of pentagons as heptagons.
(Remember that we're also insisting that all vertices have degree three.) If we use
octagons instead of heptagons, then there must be twice as many pentagons as
octagons. (This can be verified for the belcastro example given in Handout 2.)

Question 1. This problem is a lot easier to do if the students did the first page of
Handout 2, where they make a fundamental domain drawing of this torus. They

should get V =16, E = 32,and F = 16, giving V — E+ F = (.

Question 2. This double-holed torus may seem a bit strange, since there are re-
gions on the surface which look flat but which also have an edge going across
them. If such edges are removed, then it will reduce the count for E and for F by
one each, so it won't change the V — E + F count.
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In any case, students should get V = 28, E = 60, and F = 30, giving V — E +
F=-2

Thoughtful students might want to draw this double-holed torus on a funda-
mental domain, which would have to be drawn on an octagon (with appropriate
sides identified). That isn’t touched upon in this handout, but would make an
excellent side project or homework problem, especially for a topology course in
which classification of surfaces is a goal.

Question 3. At this point the students have three data points:

surface V —E+F | genus, ¢
sphere 2 0
torus 0 1
2-holed torus -2 2

From this students should be able to conjecture that V' — E + F = 2 — 2¢, where-
upon a formal proof can then be investigated in a topology (or graph theory)
course.

Students may, however, have a difficult time with Question 3 if they don’t
clearly see what they should be striving for: a formula of the form V —E + F =
BLAH, where BLAH should be some expression with g in it. Student groups that
seem to be floundering on this problem should be told that this is the goal.

Question 4. Again, students who did the Buckyball activity proving that F5 = 12
should have no trouble with this activity. Since 3V = 2E, we can rewrite Euler’s
formula for the torus as

1
F-2E=0.

Then we use the facts Fs + F; + F; = F and 5F; + 6F; + 7F; = 2E to convert this
equation to

1 /5Fs + 6F + 7F
Bt Fot B 2506ty
3 2
= 6Fs + 6F; + 6F —5F; — 6Fg — 7F7 = 0
=F—F=0.

Thus, we must have the same number of pentagons as heptag(ms.

Question 5. The same exact method using octagons instead of heptagons gives
F5 — 2F; = 0, giving us twice as many pentagons as octagons.

Question 6. Part of the value of a “generalize these results” problem is to encour-
age the development in students of enough mathematical maturity to know, first
of all, what such a generalization would mean and secondly how to go about it.
This is why Question 6 is deliberately vague. The only help students might need is
with setting up the problem, but instructors should resist doing this for students.
Making the jump from abstraction to specific model is the real pedagogical goal of
this question.
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If we use only pentagons, hexagons, and #n-gons to make a PHiZZ torus and
do the same combinatorics as above, then we get

Fs—(n—6)F, =0.
So, for every n-gon we'll need n — 6 pentagons.

Other projects

Once people get familiar with making PHiZZ tori, a wide range of possibilities
are opened. Making “Bucky tubes” using only pentagons and hexagons is easy,
and studying tori gives one the tools to make bends in these tubes. With these
tools in hand, all sorts of Bucky plumbing can be performed to make spirals, 1-
holed tori of various shapes, and even strange things like Klein bottles. (The non-
orientability of this makes it a particular challenge, but it can be done!) Searching
the web for “PHiZZ unit” will reveal pictures of many such projects.

The only drawback is that such projects typically require hundreds of PHiZZ
units. Still, every once in a while you will encounter a math major who gets com-
pletely obsessed with making large PHiZZ unit structures.

Do feel free to email me pictures of any interesting PHiZZ unit objects that
either you or your students develop!
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MODULAR MENGER SPONGE
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For courses: fractal geometry, discrete math, combinatorics,
math for liberal arts

Summary

Students are taught the business card cube modular and paneling, which is prob-
ably one of the easiest modular designs on the planet. Students are then asked to,
in groups, make a Level 1 iteration of the Menger Sponge. The handout asks them
to calculate the number of cards needed to make a Level 1, 2, 3, and n sponge.

Content

This is really an introduction to fractals in disguise. The calculations require solv-
ing a finite geometric series and understanding the concept of self-similarity.

Handout

Page one shows how to make the basic unit and presents the activity of making
a Level 1 Menger Sponge. The second page, if desired, poses the question of cal-
culating the number of units needed to make bigger Sponges and is suited for an
upper-level discrete math or combinatorics class.

Time commitment

Teaching the unit takes almost no time, but students will need 10-15 minutes to
construct their first cube. Discovering how to panel cubes and make two cubes
lock together will also take 15 minutes or so. Therefore, the first page of the hand-
out may take 40 minutes total.

The combinatorial questions on the second page are meant for a combinatorics
class and may take some time. This could be started with 20 minutes of class time
and then finished for homework.
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HANDOUT

Business Card Cubes and
the Menger Sponge

One of the easiest modular origami things to make from standard business cards
is a cube. It takes 6 cards. To make a unit, make a “plus” sign with two cards and
bend them around each other. Separate them, and you'll have just made two units!
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Make six units and use them to form a cube. Each
unit is a face of the cube, and the folded flaps
have to grip the other units. When you're done,
you'll still see these folded flaps on the outside,
gripping it all together. -]
It's possible to take 6 more units and use them to
“panel” the cube so that its faces are smooth. Do /
you see how this would work?

Two (unpaneled) cubes can be locked together along a face by making the
folded flaps grip into each other. This allows you to build structures with these
cubes.

I
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Activity: Working in groups, make a “Level 1” Menger Sponge. A Menger Sponge
is a fractal object made by starting with a cube (Level 0), then taking 20 cubes and
making a cube frame with them (Level 1), and then taking 20 of these frames and
making a bigger cube frame with them (Level 2), and so on. If we scale the model
down after each iteration (so it remains the same size throughout), in the infinite
case we'll get what is known as Menger’s Sponge.
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How many business cards will it take to make a Level 1 Sponge? With paneling?
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Question 1: Let U,, = the number of business cards needed to make an unpaneled
Level n Menger's Sponge. So Uy = 6.
Compute values for Uy, Uy, and Us. Find a closed formula for U, in terms of .

Question 2: Let P, = the number of business cards needed to make a paneled
Level n Menger’s Sponge. So Py = 12.

Find Py, P», and P5. Can you find a formula (not necessarily closed) for P, in
general? How about a closed formula?
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SOLUTION AND PEDAGOGY

A large stash of business cards will be needed for this activity, as each student
will want dozens of cards. Students will certainly want to make a paneled cube of
their own, which takes 12 cards. Making a Level 1 Sponge, without paneling, takes
120 units, so students really should work in groups, and a large supply of cards
will be needed. (See the “Where to Find Paper” section of the introductory guide
of this book for tips on where to get lots of business cards.) However, folding
this modular unit is amazingly easy, and several dozen units can be folded very
quickly. So it is reasonable that student groups will be able to make a Level 1
Sponge in one class period.
The instructions leave it up to the students to figure out

(1) how to make a cube from the units,
(2) how to “panel” them, and

(3) how to make two unpaneled cubes lock together.

For (1), make sure that students are leaving the “flaps” on the outside of the
cube. If they are tucked inside, it won't stay together. Other than that, the hardest
part is holding the units together as the last one is inserted. Making the folds sharp
helps. Again, students may find it easier to do this in groups of two (more pairs of
hands!) until they get the hang of it. The picture on the handout should be a big
help.

L

For (2), conceptually the process of paneling is pretty easy—just let the flaps
of a new unit grip the flaps of a side of the cube in a perpendicular fashion (see
above), but actually doing this can be tricky. It turns out to be easier to hook in
one side of the panel, and then open up (slightly) one side of the cube to lock the
other side of the panel. Paneling a cube has the advantage of making it very stable
and strong.

The idea behind (3) is exactly the same as paneling, but the result is two cubes
locked onto one another along a face. This is also very stabilizing, making any

structure made of such cubes mighty solid.
It is also challenging to put paneling in all the interior faces of the Level 1
Sponge. Students will discover that if they want to panel it (which can be very
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attractive, especially if colored business cards can be found), they'll need to panel
the inside faces before the outer cubes are locked in place.

Be sure to let students discover the process of making a Level 1 Sponge them-
selves. It can either be easy and straightforward (if they plan ahead and build it
from the “inside-out”) or very frustrating (if, for example, they build the outside
cubes first and then try to panel the inside parts last). Planning how to construct
the object helps students understand the structure of the Sponge and will provide
insight on the computational questions on the flipside of the handout. A math for
liberal arts or other low-level class will likely not consider the second page of the
handout, as the combinatorial questions considered there are fairly challenging.
But, it should be right at the level of students in a combinatorics or discrete math
class for math or computer science majors.

Instructors in any class using this activity should be forewarned that it is nor-
mal for students to become addicted to making business card cube structures.
During the beta-testing phase in the creation of this book, I received reports from
faculty at Albion College, Davidson College, and Loyola Marrymount University
about how Level 2 or even Level 3 Sponges were being attempted by students,
collaboratively building them in common spaces or department lounges. Inci-
dentally, only one person has thus far managed to make a Level 3 Sponge out
of business cards. Jeannine Mosely’s Business Card Menger Sponge Project (see
[Mos]) took many years to complete, weighs over 150 Ibs, and required structural
engineering problems to be overcome before success was achieved. As Dr. Mosely
states, a Level 4 sponge would require over a million cards, would weigh over a
ton, and thus wouldn’t be able to support its own weight. Do not attempt to make
a Level 4 Sponge.

Question 1

Uy = 6, and the Level 1 Sponge is literally made of 20 cubes. So U; = 6 x 20 = 120.
The Level 2 Sponge will be made of 20 Level 1 Sponges, so Uz = 120 x 20 = 2,400.
Uz = 48,000. In general, the closed forumula is U, = 6 x 20".

Question 2

Py = 12, and P, is not nearly as easy to compute as its L, counterpart. There are
several ways to think about this, but it's more valuable to approach the problem
in a way that will generalize. For example, here’s one way that doesn’t generalize:

Py = U + (panels for the 8 corner cubes) + (panels for the 12 edge cubes)

= 120+8x3+12x4
= 120+ 24 + 48 = 192.

But then computing P, doesn’t follow from this approach, since there are more
than just corner and edge cubes in the Level 2 Sponge.

A more elegant approach is to think of P, as 20 copies of paneled, Level n — 1
cubes, but wherever two Level n — 1 cubes are locked together, those sides won't
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need paneling. So, we just need to keep track of the places where we won't need
paneling and subtract that number of panels. Here’s how we could have done that
to compute P;:
P; = (8 corner F cubes) + (12 edge P cubes)
= 8(Py — 3 panels not needed ) + 12(Py — 2 panels not needed)
= 8(P)—3)+12(P) —2) =8 %9+ 12 x 10 = 192 units.

Similarly we get

P, = (8corner P cubes) + (12 edge P; cubes)
8(P; — 3 x 8 panels not needed) + 12(P; — 2 x 8 panels not needed)
8(Py —24) +12(P, — 16) = 8 x 168 + 12 x 176 = 3456 units.

Also,
Py = (8 corner P; cubes) + (12 edge P> cubes)
= 8(P,—3x8%)+12(P,—2x8?%)
= 66,048 units.

This suggests a general recursive formula:
P, =8(P,-1 —3x8" '1)+12(P,, 1—2x 8" '1) = 20P,_1 — 6 x 8".

In fact, now that you see this recurrence, you might be able to see a more simple
justification of it (if you didn’t see it already!): To get P, we need to take 20 Level
n — 1 paneled cubes (which each take P,,_; cards), and then we need to subtract
the paneling that we don’t need. Each of the 12 edge-positioned Level n — 1 cubes
has two sides that won't require paneling (so 12 x 2 = 24), and then each of these
sides will be facing the side of a corner cube that won’t need paneling either. So
that’s 48 sides total that won't need panelling. Now, the side of a Level n — 1 cube
will need 8" cards to panel it, so we need to subtract 48 x 8" 1 —6x8" giving
the desired recurrence.

This recurrence can be solved (to get a closed formula) using generating func-
tions: Multiply the equation by x" and sum over all n > 1 to get

Y Pa"=20) P, qx"—6) 8"
n=1 n=1 n=1

Our generating function will be G(x) = Y, P,x". Plugging this in and using
Yoneo(8x)" =1/(1—8x) gives

G(x) — Py = 20xG(x) — 6 (ﬁ - 1)

6 18 6
= G(x)(1-20x) =12 — ——+6 = G(x) = ~ :
(x)(1 - 20x) 18+ ) = 120y ~ A =80 (1 = 200)
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Partial fractions are needed to break up the last term, so we set

6 _ A B
(1-8x)(1—-20x) 1-8x 1-—20x

which gives 6 = A(1 —20x) + B(1 — 8x). Using a standard Calc II trick, we can
letx = 1/8to giveus A = —4 and x = 1/20 to give B = 10. Thus, we have our
generating function:

8

G =T 50%

4 — C 1,0 - n..n
g =8 L 20 +4 ) 8

n=0 n=0
andso P, = 8 x 20" + 4 x 8",

Undoubtedly there are other ways to compute this, perhaps more easily than
the above method. However, since recurrence relations and generating functions
are standard material for an undergraduate combinatorics course, this activity can
provide a surprising and accessible application of these methods.

Follow-up/senior project

Students studying fractal geometry who have taken a combinatorics course would
be prepared to investigate the problem of computing the surface area and volume
of the Menger Sponge. This object, like many fractals, exhibits counterintuitive be-
havior in this regard: the “infinite iteration” of Menger’s Sponge has zero volume
but infinite surface area.

Remember that when performing such an analysis, each iteration of the Sponge
needs to be at the same scale. That is, if we assume that the Level 0 Sponge (cube)
has side length 1, then so should all Level n Sponges. (So a Level 1 Sponge will
have volume 20 x (1/27).) Continuing this, we see that the volume of a Level n
Sponge is (20/27)", which goes to zero as n goes to infinity.

The number of panel units, P, — U, can be used to compute the surface area
of a Level n Sponge, and taking the limit of this shows that the surface area goes
to infinity.






Activity 15
FOLDING AND COLORING
A CRANE
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For courses: discrete math, graph theory, math for liberal arts

Summary

Students are taught the flapping bird (a more simple version of the traditional
Japanese crane) model. They are then asked to unfold their model and draw the
crease pattern. Then they are asked to color the regions of the crease pattern so
that no two neighboring regions receive the same color, and they should use as

few colors as possible. What do they think will happen when we refold the model?
What does this tell us?

Content

While this activity touches upon the beginnings of the field of “computational
origami,” it is also a simple graph coloring exercise. Giving a purely theoretical
proof is a good basic graph theory exercise.

Handout

Only one, containing instructions for folding the flapping bird and the activities
for drawing the crease pattern and coloring it.

Time commitment
Teaching the crane (flapping bird) should take 15-20 minutes, and drawing the

crease pattern can take some time. After that, coloring and studying the coloring
does not take long; 45 minutes for the whole activity is a good bet.
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HANDOUT

Folding a Flapping Bird (Crane)

Begin with a square piece of paper.

® O P

(1) Crease both diago- (2) Fold in half both (3) Now bring all cor-
nals. Then turn over. ways. ners down to the
bottom, wusing the

creases just made,...

(4) ...like this. This (5) Then fold the top (6) Undo the last two
is called the prelim- point down. steps.
inary base. Bisect
the two angles at the
open end.

Use this crease!

(7) Now do a petal fold: (8) ...like this. Bring the (9) ...like this. Turn

lift one layer of pa- point all the way up. over.
per up, using the in- The sides will come
dicated crease as a to the center. Flat-

hinge,... ten...
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(10) Now do the same (11) This is called the (12) Crease firmly. Then
petal fold on this bird base. Fold the unfold.
side. bottom two flaps up.

(These will become
the head and tail.)

% My Ay

(13) Now refold the last (14) ...picture.) Lastly, (15) You're done with the

creases, but this time reverse fold the flapping bird!
make them reverse head.
fold through the lay-

ers. (See the next...

This is an example of a flat origami model, since the finished result can be
pressed in a book without crumpling.

Activity 1: Carefully unfold your bird and draw with a pen the crease pattern for
this model. Make sure to draw only those creases that are actually used in the
finished model, not auxiliary creases made along the way.

Activity 2: Then take your crease pattern and color the faces with as few colors as
possible. That is, color the regions in between crease lines following the rule that
no two regions that border the same crease line can get the same color (just like
when coloring countries on a map). What's the fewest number of colors that you
can use?

Activity 3: What will the coloring look like when you refold the model? Make a
conjecture before you fold it back up to see what happens. Will this happen for
every flat origami model? Proof?
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SOLUTION AND PEDAGOGY

This is a fairly simple activity with a big “Wow" factor. Its purpose is for students
to discover that all flat origami model crease patterns are 2-face-colorable in the
graph theory sense. The ”proof by origami” is actually quite elegant, although it
can also be proven purely by graph theory.

Teaching the fold

Instructors can simply give students the diagrams for the flapping bird in the
handout and let students follow them at their own pace. (Working in groups to
help each other outis a very good idea.) Or instructors can lead the class in folding
it step by step. In either case instructors should fold this model themselves several
times to become very comfortable with the more tricky petal fold (steps (7)-(8))
and reverse fold (steps (13) and (14)), as these always give some students trouble.

The instructions depict paper that s colored on one side and white on the other.
Traditional origami paper (kami) has this property, but it is neither needed nor
desired for this activity. Plain white squares of paper are better so that students
can easily draw the crease pattern and color the regions. Cutting white photocopy
paper into squares makes a good size for this model and activity.

Although the handout doesn’t mention it, there is a reason why this model is
called the Flapping Bird. If you pinch the base of the neck with one hand and
gently pull on the tail with the other hand, you can make the wings flap. A newly-
folded model needs to be “coaxed” into allowing the ﬂapping mechanism to work,
and then it should flap easily. This nice side effect has no bearing on the mathe-
matics of this activity whatsoever.

The activities

Students may be reluctant to unfold their creation, but if you tell them to just
follow the origami instructions in reverse, it'll be easier for them. Drawing the
crease pattern is rather tricky, only because it's easy to draw a crease line that is
not used in the final model. Emphasize that only crease lines that are used in the
end may be drawn.

The result should look as follows (I've indicated which creases are mountains
and which are valleys, but the students need not keep track of that):

o .‘\4'.._1.'.’_ .’.('w
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If it helps, students can try drawing the creases used as they unfold the model,
step-by-step, or students can draw on the creases with a magic marker or felt tip
pen while the paper is still folded. I've also found it helpful to show them what
it should look like once everyone has had a chance to begin or almost finish their
crease pattern. That way they can make sure it’s correct for the coloring part of the
activity.

Only two colors are needed to color the regions of the crease pattern. Since each
crease line borders two regions of different colors, when the crease is refolded it
will make the two colors face in opposite directions. Thus a 2-colored flat origami
crease pattern will, when folded, result in a model that is all one color on one side
and all the other color on the other side.

In fact, this offers a slick proof that all flat origami model crease patterns are
2-face-colorable: Fold it up to get a flat object. Since it’s flat, each region of the
paper will face in one of two different directions, say left and right. Color every
region that faces left white and every region that faces right grey. When the model
is unfolded, the crease pattern faces will be colored in only two colors and no two
neighboring faces will have the same color.

One can also prove this using only graph theory. First argue that all vertices
in the interior of the paper of a flat model have even degree. (This is not so easy
for undergraduates to prove rigorously, so you may want to allow some leeway
here.) Then, if we consider the crease pattern to be a planar graph, where the
boundary of the square also contributes edges to the graph, the only odd degree
vertices would possibly be on the paper’s boundary. Create a new vertex, v in
the “outside face” and draw edges from it to all the odd degree vertices on the
paper’s boundary. Graphs always have an even number of vertices of odd degree,
so the degree of v is even, and the new graph that we've created has all vertices
of even degree. Planar graphs with all vertices of even degree have duals that are
bipartite. So the dual is 2-vertex-colorable, meaning that the crease pattern with
the vertex v is 2-face-colorable. Removing the vertex v then gives a 2-face-coloring
of the original crease pattern.

In a graph theory course, this proof can be used to reinforce some basic con-
cepts (duality, bipartite graphs, degrees of vertices). Developing such a “pure
graph theory” proof can be a great exercise for students.

One way to speed things up is to adopt a revised order for this activity: (1)
Fold the crane. (2) While the paper is folded, have students color the regions of
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paper between the creases so that all faces facing one direction are grey, say, and
all regions facing the other direction are white. (3) Then have them unfold the
model and explain why this results in a proper face coloring of the crease pattern.
Coloring the regions while the paper is folded can be tricky, especially for the small
regions around the head. But this alternate approach can cut down the time used
by alot.

Why do we care?

As mathematicians, this 2-colorability result has inherent appeal. Many math stu-
dents will appreciate this, but there’s another motivation at play here. One of the
big open areas in the new field of “computational origami” (which, yes, really is
a new and rapidly growing subfield of computational geometry—see the work of
Erik Demaine if you need convincing, for example [Dem99, Dem02]) is the prob-
lem of programming a computer to do virtial origami. The goal is to devise a
program where a user could manipulate a sheet of virtual paper on-screen and
fold it into any origami object. Such a program is miles away from being made
due to the computational complexity problems that arise in paper folding. (E.g.,
deciding whether or not a general crease pattern can be folded flat is NP-complete;
see [Ber96].)

This 2-colorability result gives us a very fast way for a computer to be able to
determine the direction in which each region of a flat origami crease pattern will
face when folded. Thus, this result is very helpful to those studying the computa-
tional side of origami.



Activity 16
EXPLORING FLAT VERTEX FOLDS

o]

+003

For courses: geometry, discrete math, combinatorics, math for
liberal arts, intro to proof, modeling

Summary

Students are asked to fold, from numerous small pieces of paper, lots of flat ver-
tex folds—origami models that fold flat and whose crease pattern contains only
a single vertex, say, in the center of the paper. The mission: find patterns, make
conjectures, and find proofs and counterexamples.

Content

The conjectures that the students make, and their proofs, will involve some basic
geometry, combinatorics, and careful reasoning. Thus this could be used in a ge-
ometry or combinatorics course as an early activity to emphasize the process of
exploration, conjecture, and proof. The overhead for this is minimal, so it could
also be used in a math for liberal arts or intro to proofs course. Further, this is a
fine example of taking a physical situation, studying it, and creating the language,
notation, and theory that you need to model it mathematically. Thus, this would
fit right into a mathematical modeling class. The things conjectured here also form
the basics of flat origami theory.

Handouts

The first handout is deliberately simple and open-ended. The main idea is to get
students to make their own conjectures and look for either counterexamples or
proofs. There are many conjectures that can be made about flat vertex folds (de-
scribed in the solutions section), so the handout doesn’t provide any hints. It's
best to let the students discover what they will here.

The second handout is a Geometer’s Sketchpad activity that describes a way
to model flat vertex folds in this program. Its specific purpose is to give students
an experimental way to discover the Kawasaki-Justin Theorem.
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Time commitment
The first handout is very open-ended and can take a whole class period or several
class periods, depending on how instructors want to do it. The second handout
can take 30-40 minutes, depending on the students” familiarity with GSP.



HANDOUT

Exploring Flat Vertex Folds

Activity: Take a square piece of paper and make, at random, a single vertex crease
pattern that folds flat. Place the vertex near the center of the paper (not on the
paper’s boundary—that doesn’t count), make some crease lines coming out of it,
and then add more to make the whole thing fold flat. Some examples are shown
below. Make lots of your own.

\ N s
L N

..\..
\.

. 7l/ -
! N

/

\ .

The question is, “What's going on here?” Are there any rules that such flat
vertex folds follow? Your task is to formulate as many conjectures as you can
about how such folds work.

If you come up with a conjecture, write it on the board to see if others in the
class agree or if anyone can find a counterexample. Or, better yet, see if anyone
can actually give proofs of your conjectures!



HANDOUT

Flat Vertex Folds on Geometer’s
Sketchpad

To simulate a flat vertex fold on Geometer’s Sketchpad, do the following:
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(1) Make a circle on the left side of your worksheet. Label the center O.
(2) Make four points on the circle, A, B, C, and D.

(3) Construct segments between these points and O. Also construct segments
between A, B, C, and D in order to make a quadrilateral (as shown above).

(4) Select the quadrilateral, points A, B, C, D, and O, and the segments at O,
and select Translate from the Transform menu. Choose Rectangular coor-
dinates and make the horizontal and vertical distance be 12 cm and 0 cm,
respectively.

(5) Younow have a second copy of the quadrilateral “paper” with creases. Select

the text tool and click on all the points of this copy to see what they are.

(6) We now will reflect parts of this copy about the creases to make it fold up.
P PY P
Select segment O' A’ and choose Mark Mirror from the Transform menu.

(7) Now select segments A'B’, B'C!, C'D', O'B’, O'C', O'D'" and points B, C,
and D’. With all this selected, choose Reflect from the Transform menu.

(8) You've just make AO'A’D’ fixed and reflected the rest of the paper about
crease O’ A’! Now we want to hide the parts that we had previously selected.
Under the Edit menu choose Select Parents and then unselect segments oO'A’
and O'D’ and point D'. Then, under the Display menu choose Hide Objects.

(9) Use the text tool to click on the new points to see what they are. (B”, C", D")
(10) Now select segment O'B” and do Mark Mirror.

(11) Select segments B"C", c"pD", 0'C”, and O'D" and points C" and D”. Then
do Reflect.

(12) Again, do Select Parents, unselect segment O'B”, and then Hide Objects.
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(13) Label the points again, select segment O'C"/, and do Mark Mirror.
(14) Select C"'D" and O’D" and Reflect. Then Hide C"'D"", O'D"’, and D"".

Exercise: Does the last point you made, D" line up with point D'? If so, then the
crease lines you made on the left can fold flat. If they do not, then move the points
on the left circle until they do. Use GSP to measure the angles ZAOB, ZBOC,
ZCOD, and ZDOA. What can you conjecture about these angles when the creases
fold flat?
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SOLUTION AND PEDAGOGY

Instructors will have to practice making lots of flat vertex folds themselves before
leading this activity. The reason for this is that most people enter this kind of free-
form exploration of paper folding with preconceived notions as to what paper can
do. Instructors may have such notions as well.

These notions can include things such as, “crease lines must go all the way
through the paper” (they do not—see the right figure below for an example differ-
ent from the ones on the handout) or “one can’t have too many mountain creases
(or valley creases) in a row.” (The left figure below shows how lots of mountains
can be consecutive.)
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Folding lots of examples in groups so that students can share their folds with
each other should eliminate such preconceived notions. (Note that these folded
vertices must be in the interior of the paper.)

However, another problem that many students have is in making “whimpy
creases.” In these flat vertex folds it is fairly important that creases be made sharp.
Soft, ambiguous creases can be so inaccurate that students will often think that
they have a counterexample to someone’s conjecture when in fact they do not.

Conjectures
So what kinds of conjectures might students develop? Here's a list:

(1) Flat vertex folds always have even degree (number of creases).

(2) The angle between two consecutive creases in a flat vertex fold is always

< 180°.

(3) If we stab the folded vertex somewhere reasonable (i.e., not near the bound-
ary of the paper and not directly on a crease), then we’'ll always get an even
number of layers of paper at that point.

(4) The number of mountain creases and the number of valley creases always
differ by 2 in a flat vertex fold.

(5) If &, a7, and a3 are consecutive angles in a flat vertex fold and if &y > &, and
a3 > ay, then the two creases separating these angles must have different
mountain-valley parity.

(6) If a1, a, ..., a2, are the angles, in order, between creases in a flat vertex fold,
then a7 — an + a3 — - - - — ag, = 0.
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(7) (Using the same notation as (6)) &y +az+---+ap, 1 = &z + a4+ +ap, =
180°,

(8) (Harder) If we draw crease lines meeting at a vertex with consecutive angles
satisfying ay — ap + a3 — - - - — &g, = 0, then the vertex will fold flat.

Of course, students may conjecture other things, like “You can’t have all moun-
tains or all valleys,” which while true, are pretty simple. Also, all of the above
conjectures are true; students may develop some false ones. Such conjectures, or
ones that you never thought of before, should be treated with equal seriousness.

I like to keep a running list of the conjectures on the board as students explore
flat vertex folds. That way students can choose to keep looking for more conjec-
tures or turn their attention to either proving or disproving a conjecture on the
list. It can be especially inspiring to name conjectures after the students who make
them. Trying to prove “Max’s Conjecture” feels a lot more personal than “Conjec-
ture 2.” It goes a long way towards helping students feel like they own the math
that they're developing, which is a big step towards becoming a math researcher.
Also, you can probably see how this activity could take several class periods if
you like. A running list of conjectures can be assigned for homework, in a Moore
method-like approach to it all.

As mentioned earlier, it’s best for the students to come up with these conjec-
tures themselves. In the theory of flat origami, conjectures (4) and (6)—(8) above
are probably the most significant (they are known as Maekawa’s and Kawasaki’s
Theorems, respectively [Kas87], though they were also discovered by Justin [Jus84,
Jus86], and they are often referred to as the Maekawa-Justin and Kawasaki-Justin
Theorems), but if one of them is missed by the class there’s no real harm done.
(Unless you plan on also doing subsequent activities on flat origami or the matrix
models, in which case you may need the class to know Kawasaki’s Theorem.)

In fact, it is very likely that students will not see the angle condition needed
for (6)—(8) above. Since this is an important result for some of the other activities, I
included a handout that shows students how they might simulate a four-valent flat
vertex fold on Geometer’s Sketchpad. The idea is this: Flat folds require that each
crease line acts like a reflection of the plane. So, we create a degree-four vertex in
GSP and imagine that it has been cut along one of the crease lines (segment OA on
the handout). Then, we use the reflection properties of GSP to show what folding
along the other crease lines would look like. If the two cut ends of the paper line
up, then the four creases make an foldable flat vertex crease pattern. If they do not
line up, then the creases do not fold flat.

The purpose is to allow students to measure the angles between the creases so
that they can generate data of which angles will work for a flat vertex fold. (To
make GSP measure an angle, click the three vertices that form the angle in order,
like A then O then B for ZAOB, then choose Angle in the Measure menu. You
might also want to change the angle measuring default to “units” in the Prefer-
ences, since this makes the angles easier to compare.) This gives the students a
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chance to actually conjecture Kawasaki’s Theorem in the degree-four case, which
can then lead to the general theorem.

Still, it is important for the students to see that there is real mathematics going
on with these little folded pieces of paper, so some tactful hints can be suggested.
For example, oftentimes students don’t even think about considering possible pat-
terns among the mountain and valley creases. The handout actually shows some
mountains and valleys on the sample vertex folds, so that is a subtle hint. If the
students don’t pick up on that, you may want to suggest out-loud to the whole
class as you wander amongst the groups, “It’s funny that no one is thinking about
the mountain and valley creases.” Then they’ll start conjecturing about them.

Proofs of the conjectures

There are many ways to prove these conjectures. If this were an origami-math text-
book or monograph, I would choose an elegant order in which certain results flow
from one to another. But your students won't be doing it that way, so while yes,
some results are more easily proven from others, it helps to know how to prove
them separately as well. (Of course, this is the difference between doing research
yourself and reading about it, sans scribbles and scratch work, in a publication.)
So, in no particular order, Ill list several proofs. You and your students may

find more. For references in the literature, see [Hul94], [Hul02-1], and [Hul03].

Maekawa-Justin Theorem: Let M and V denote the number of mountain and valley
creases, respectively, that meet at a ﬂat vertex fold. Then M — V = 42.

Proof 1: Fold the vertex flat and imagine cutting the vertex off with scissors, leav-
ing a flat polygonal cross-section. (See the illustration below.) Imagine a monorail
traveling along this cross-section in a counterclockwise manner. Then, assuming
that we're looking at the cross-section from above, every time the monorail gets to
a mountain crease it will rotate 180°, and every time it gets to a valley crease it'll
rotate —180°. When it gets back to where it started it will have rotated a full 360°.
So,
180M — 180V =360 = M -V = 2.

If we had looked at the vertex “from below,” we would have gotten —2. O

apolygon

cut

........................... %

Proof 2: (Jan Siwanowicz, HCSSIiM class of 1993, developed this proof.) If n is the
number of creases, then n = M + V. Fold the paper flat and consider the cross-
section obtained by cutting off the vertex; the cross-section forms a flat polygon. If
we view each interior 0° angle in this polygon as a valley crease and each interior
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360" angle as a mountain crease, then the sum of the polygon’s interior angles
gives OV +360M = (n —2)180 = (M + V — 2)180, which gives M — V = —2. If
we reverse the roles of mountain and valley creases (this corresponds to flipping
the paper over), thenwe get M — V = 2. Cl

Even Degree Theorem: Every flat vertex fold has even degree.

Proof using Maekawa-Justin: Let the number of creases at the vertex be n = M +
V=2V+M-V =2V +2=2(V +1), which is even. O

Proof using coloring: If the students have done the Folding and Coloring a Crane
activity, they'll know that our flat vertex folds are all 2-face colorable. This imme-
diately gives us that there are an even number of creases. |

Stand-alone proof: Using the monorail approach as seen in Proof 1 of M-], keep
track of the times the monorail is traveling left or right by a sequence of Ls and
Rs. Since each crease is folded flat, this sequence will alternate L and R. If we stop
keeping track of these once we arrive at the region where the monorail started, we
get the same number of Ls as Rs, so the sequence has even length. The length of
this sequence equals the degree of the vertex. O

Big-Little-Big Angle Theorem: Suppose that in a flat vertex fold we have a sequence of
consecutive angles w; 1, a;, and a;yq with a; 1 > o; and a; < w; 1. Then the two crease
lines in between these three angles cannot have the same mountain-valley parity.

Proof: For the sake of contradiction, suppose that the two creases are both valleys
or both mountains. Then, when they were folded, we would have both big angles
a; 1 and &; 1 covering up smaller a; on the same side of the paper. This is impos-
sible to do without the paper intersecting itself. Thus the two crease lines must
have different mountain-valley parity. O

Kawasaki-Justin Theorem: A vertex fold v folds flat if and only if the alternating sum
of the consecutive angles between the creases at v equals zero.

Proof: Let vbea flat vertex fold with consecutive angles between the creases ay, ...,
x2;,. Fold the vertex flat and imagine an ant being dropped on a crease, who then
walks around the vertex on the folded paper (so that the ant’s path, if marked on
the unfolded paper, would make a simple closed loop around v). Let’s assume that
the ant starts by walking through angle a1. Then it will cross a crease line, switch
directions, and walk along az. Then it'll hit the next crease and walk a3 in the same
direction as &, and so on (see the illustration below). If we keep track of the angles
that the ant swings out, we'll get an alternating sum a; — ay + a3 — - - - — &y, At
the end the ant should come back to where it started, so this sum should equal 0.



174 Activity 16

o1

+03

For the converse, we assume that ®7 — ay + a3 — - - - — &9, = 0, and we want to
show that the vertex can fold flat. We'll do this by generating a mountain-valley
assignment for the creases at v that will not force the paper to self-intersect when
folded.

Pick a crease line | of v at random and cut along this crease line, making two
“loose ends” of paper where [ used to be. Then, assign alternating mountains and
valleys to the remaining crease lines. We can then fold these creases up, where
the cross-section would look like a zig-zag pattern. Since the alternating sum of
the angles is zero, we know that the two loose ends will end up aligned with
each other. If we're lucky, these loose ends will have no paper in between them,
whereupon we can glue them back together (which will assign either a mountain
or a valley to I) and the vertex will have been folded flat. (See the illustration of
this below.)

glue [5s back
together
-

If we're unlucky, however, there will be layers in between the loose ends of I.
In that case (as illustrated below) we need to look at the cross-section of our zig-
zag pleats and, assuming that they go left-and-right, choose the right-most crease
in this cross-section to reverse, turning it from a mountain to valley or vice versa.
Doing this will place the loose ends on top of one another with no flaps of paper
in between them, whereupon they can be glued back together to complete the flat
vertex fold. O

reverse [p
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glue Iotogether ™
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Angle Theorem: The angle between two consecutive creases of a flat vertex fold is always
< 180°.

Proof using Kawasaki-Justin: Since the vertex folds flat, we know that } (—1)'x; =
0. But we also know that }_a; = 360°. Adding these equations together and
simplifying, we get

ap+az+ -ty = 1806, and

Xy + kg + - - -+ g, = 180°.

Thus no angle in a flat vertex fold can be greater than or equal to 180°, unless it is
a “trivial” vertex of degree 2, which would have angles of exactly 180°. Ll

Yes, one doesn’t necessarily want to consider vertices of degree two, but some
students might insist that they exist. When developing such “flat origami theory,”
it is sometimes convenient to allow vertices of degree two, so don't sweat it.

Stand-alone proof: It's likely that students will try to prove this before discovering
Kawasaki-Justin, so a proof without that result is needed. A proof by contradiction
works quite well.

Suppose that there is an angle a; > 180° in a flat vertex fold. One fundamental
fact about folding paper is that the paper does not stretch or tear. Thus given any
two points on the unfolded sheet of paper, the distance between these points can
either remain equal or decrease after the paper is folded. That is, if f : D — R? is
our flat folding map, where D is our piece of paper, then we need d(f(x), f(y)) <
d(x,y), for all x,y € D, otherwise the paper would have to rip in order for the
points to move further away from where they started.

So let x be a point in the region of paper spanned by angle #; ; and let y be
a point in the paper spanned by «; ;. Since &; > 180°, the region of paper that
contains angle a; is not convex. Thus, if we imagine &;’s region as remaining fixed,
folding the crease lines between it and angles a; ; and a;,; will move the points
x and y further away from each other, which is a contradiction. O

Number of Layers Theorem: The number of layers of paper near a flat vertex fold at
any point that does not intersect an edge is even.

Proof: Using the ant-walking argument of the Kawasaki-Justin Theorem, the ant
would cross this point (assuming its path is chosen properly) once for every layer
of paper at this point. Every time the ant crosses this point in one direction, say to
the left, then it must also cross it to the right to get back to where it started. (That
is, if the ant begins to the right of the point, it will cross it first by traveling to the
left. Then, to get back to the right side, it will have to cross the point by traveling
to the right.) Thus, every ant crossing of this point must come in a left-right pair,
meaning that we’ll have an even number of layers of paper at that point. l
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Pedagogy

The list of conjectures and proofs is only provided here because it helps a lot for
instructors to know what to expect when embarking on an open-ended activity
such as this. Instructors must resist the urge to revert into lecture mode and just
present this string of conjectures and proofs to the students. This would defeat
the entire purpose of the activity, which is to present students with a problem that
is completely unfamiliar, easy to investigate, requires no prior knowledge, and
contains deep insights to discover. In this way they can get first-hand experience
with mathematical research as they look for patterns, make conjectures, and try to
prove them.

There’s a very good chance that students will not make all the conjectures on
the list. Perhaps they’ll discover a few not on the list! Teaching such an open-
ended activity can be very challenging because you don’t know exactly what will
happen in class. It's best to not think of this as material that needs to be covered.
Rather, it’s the experience of wrestling with the problem and the development of
conjectures and proofs that should be the main goal. If you plan on also doing
more flat foldability activities, like the Impossible Crease Patterns activity or the
matrix model activities in this book, then you will want to make sure that they
discover Maekawa-Justin and Kawasaki-Justin, which can be done by dropping
hints.

On one hand, this activity is very simple and fun, since the math involved
requires no overhead. On the other hand, it is very challenging because it requires
students to think like mathematicians and to “do math” in a way very different
from what they probably have seen before.

Motivation may also be an issue, especially for a lower-level or “math for lib-
eral arts” class. For such classes it would be very helpful to have them fold some
actual models, like the flapping bird in the Folding and Coloring a Crane activity,
before diving into individual flat vertex folds.

Bad proofs

When formulating proofs to these conjectures, there is a strong tendency for stu-
dents to pursue lines of thought that can be very unfruitful. What's worse, there
are certain arguments that can be made for Maekawa-Justin and Kawasaki-Justin
in particular that sound very convincing to students but that are completely non-
rigorous and false. This makes the proof-building part of this activity very valu-
able, as some conjectures are not hard to prove at all (but require sound thinking),
while others can be very challenging.

Instructors should be especially on the lookout for attempts to prove Maekawa
or Kawasaki by induction. Such proof attempts are in some sense doomed to fail
because once you remove some crease lines from a general flat vertex fold, the
result is not likely to be a flat vertex fold anymore! Still, some students will insist
that, for example, everywhere there is a mountain crease there should also be a
valley crease to go with it. So, for example, the most “basic” (base case) flat vertex
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fold is one of degree 2, which we can think of as a vertex with two mountains, say,
around it. Then, any other flat vertex fold will be adding a mountain and a valley
to this and then repeating, always resulting in two more mountains than valleys.
Some students will swear up and down that this is a valid argument, but of course
it is nonsense. (On the other hand, there are other ways in which induction might
work; see the “Follow-up things” section for more info.)

The difficulty in proving these conjectures is that students have a hard time
seeing where to start. There are no immediate formulas or “mathy” things to use
that they can easily see. This is yet another reason why this activity can be a valu-
able experience for students, since often mathematicians have to face situations
in which we must create the mathematical model ourselves before we can prove
anything. All students have here is a folded piece of paper. Making a model by
defining the angles and the mountain-valley creases is a start, but it is very dif-
ficult to generate anything that would lead to a rigorous proof without a dose of
creativity, like wondering what it would be like to crawl around the vertex on the
folded paper, or to cut off the vertex and look at the cross-section it reveals. Those
are the keys to good proofs here. Also, the proof by monorail and ant-walking
techniques can be very helpful. They offer a way to visualize what the paper is
doing. Suggesting this technique (they are, after all, basically the same thing) or
even offering the ant-walking proof of Kawasaki-Justin may give them ideas for
proving other things.

Pedagogically, it can be very difficult for instructors to balance the need for
students to develop their own proofs with the desire to move things along by giv-
ing hints. In this sense, it is almost dangerous for instructors to know the above
proofs, for if you didn’t know them then you would be forced to let students de-
vise proofs on their own. After all, one of the above proofs of the Maekawa-Justin
Theorem was developed by a student (a high school student, at that), so you never
know what new approaches they might come up with.

Follow-up things

There is a wealth of directions in which students could go to pursue the subject
of flat vertex folds further. This has great potential for student projects, including
working on accessible open problems.

This book contains other activities (following this one) that look at some of
these directions. Asking whether or not the Kawasaki-Justin Theorem can be gen-
eralized to crease patterns with more than one vertex is the subject of the Impossi-
ble Crease Patterns activity. Also, an equivalent version of Kawasaki-Justin can be
made using a matrix model for flat folds, as explored in the Matrix Model of Flat
Vertex Folds activity.

Students and instructors who want to know more of the full story, however,
are encouraged to read my paper “The Combinatorics of Flat Folds: A Survey”
[Hul02-1]. One of the things mentioned in that paper is how both the Maekawa-
Justin and Kawasaki-Justin Theorem proofs never actually use the fact that the
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paper we were using was flat. Thus, both of these results apply to folds on paper
with different curvature. For example, if we were folding a cone where the vertex
was placed at the cone point, then both of these results would still hold. In this
form, one can actually prove these theorems using a careful induction argument,
since removing creases can then be the same as reducing the amount of paper
around the cone.

Another avenue to travel in this area is counting the number of valid mountain-
valley assignments that are possible for a given crease pattern. The Folding a
Square Twist activity looks at an instance of this, as does the survey paper men-
tioned above (see also [Hul03]).



Activity 17
IMPOSSIBLE CREASE PATTERNS

For courses: geometry, discrete math, combinatorics, math for
liberal arts, intro to proof, modeling

Summary

This is really a follow-up for the previous activity on flat vertex folds, but it doesn’t
have to be. Students are given squares of paper with crease patterns drawn on
them and asked to fold along the lines to fold the paper up into something flat.
The catch is that the crease patterns are impossible to fold flat without inserting
new creases. This is puzzling because each vertex will locally fold flat, but the
global pattern will not. Students are asked to explain why these won't fold up.

Content

On a basic level this offers students more practice examining real-life situations
and trying to analyze them mathematically. Having done the previous activity
puts this one into a better context, but this activity by itself requires no overhead.
With the previous activity, however, students are poised to look more deeply.
Given a single vertex crease pattern, we can easily determine whether or not it
can fold flat. But a multiple-vertex crease pattern poses more difficulties, as illus-
trated in the impossible crease patterns of this activity. It turns out that deciding
whether or not crease patterns can be folded flat in general is NP-complete. Thus,
this can be an illustration to students in an analysis of algorithms course of the
different contexts in which decidability and computational complexity can arise.
Actually proving NP-completeness is beyond the scope of the activity, but playing
with and discussing the problems with the impossible crease patterns can give an
appreciation of how hard this problem can be with larger crease patterns.

Handout

The handout is minimal and is only a device by which to deliver the crease pat-
terns. They can either be cut out by the students or the instructor ahead of time.

179
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Time commitment

How much time this takes is entirely dependent on how many of the crease pat-
terns you want your students to try. Each one takes only 5-10 minutes to try
folding, but developing arguments as to why they don’t work will probably take

another 10 minutes each.



HANDOUT

Fold Me Up

Activity: Below are some origami crease patterns. Your task is to cut them out
and try to see what they can fold into. Note: you're only allowed to fold along
the indicated crease lines. Adding more creases is breaking the rules. You get to
decide, however, whether to make them mountains or valleys.

G5 | | 70°
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SOLUTION AND PEDAGOGY

QOf course, the whole, perhaps devilish point is that all of these crease patterns
are impossible to fold flat. Thus students may experience some frustration with
these crease patterns until they realize that the challenge is seeing that they are
impossible and then trying to figure out why.

This activity makes a great follow-up to the Exploring Flat Vertex Folds activity.
In that activity, one of the main theorems that can emerge is the Kawasaki-Justin
Theorem: a single vertex crease pattern can fold flat if and only if the alternating
sum of its angles is zero. The current activity shows that this theorem does not
extend to multiple crease patterns, as each of the crease patterns presented are
made of vertices that satisfy Kawasaki’s Theorem. The lower-right crease pattern
is especially baffling, since it only contains two vertices! These crease patterns
illustrate different ways in which flat foldability can be impossible.

The top row cannot fold flat because they force mountain-valley contradictions.
This can be seen using a basic fact about flat folding: if we have at a vertex, in
order, a large angle then a small angle then another large angle, then the two crease
lines in between these three angles must have different mountain-valley parity.
The reason for this is that if they were the same, then we’d have two large angles
covering a small one on the same side of the paper, which would force the paper
to intersect itself. (This is one of the things students may have observed in the
Exploring Flat Vertex Folds activity, i.e., the Big-Little-Big Angle Theorem.)

So in the upper-left crease pattern, we have two 90 degree angles surrounding
a 60 degree angle at all three of the vertices. Thus, the triangle in the center of the
crease pattern is supposed to have mountains and valleys alternating around it,
which is impossible.

The upper-right crease pattern suffers from exactly the same thing, but to get
the mountain-valley contradiction requires a longer chain of creases. The follow-
ing picture is one way to do it (Maekawa’s Theorem, which states that every flat
vertex of degree four must have 3 Ms and 1 V or vice versa, is also used):

M v

V== M/ M
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These examples show that mountain-valley contradictions can be thought of
as problems in 2-colorability of graphs. If we look at chains of crease lines that,
consecutively, must have different mountain-valley parity, then these chains must
be 2-colorable in order to avoid a mountain-valley contradiction. Odd cycles in
such chains are the kiss of death.

The bottom two crease patterns in the handout are more difficult to analyze.
Neither of them force mountain-valley contradictions. Instead, they force prob-
lems with the paper self-intersecting. Both are very sensitive to the location of the
vertices with respect to the square’s boundary. For example, in the bottom-right
one, if the two vertices are moved farther apart from each other, then it will be
foldable.

Actually proving that the bottom-left crease pattern is impossible is very diffi-
cult. Asking students to prove this rigorously is a very good, if somewhat cruel,
challenge, and I always do so in hopes that someone might come up with a more
solid proof than what I've seen. The idea is that the four corners of the square
turn into flaps of paper, and the horizontal and vertical creases surrounding them
determine how big these flaps are—the bottom ones are quite large while the top
ones are 1/3 the length of the square. All four of these flaps must be wrapped
around or tucked inside the model, and if you go through all the possibilities of
doing so, you discover that none of them work. Usually the problem is that one
of the bigger flaps can remain outside the model, but then the other big flap must
be tucked inside, where there isn't enough room. Only experimenting with this
model yourself will convince you that this is indeed the case.

The bottom-right crease pattern on the handout (reproduced above) is the an-
swer to a challenge from the mathematical science writer Barry Cipra to determine
whether or not all two-vertex crease patterns that are locally flat-foldable are glob-
ally flat-foldable as well. The answer was, “No,” and this is an example of such
an impossible two-vertex crease pattern. The idea is that the two parallel creases
of the 45° and the 70 angles (lines L, and L3) cannot both be valleys or both be
mountains, or else the paper will be forced to self-intersect. At the same time,
crease lines Ls, Lg, and L have to have the same mountain-valley parity. This is
known due to a combination of results: Maekawa’s Theorem and the Big-Little-Big
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Angle Theorem, which combined tell us that L; and Ly must have different MV
parity (thus L and Ls must be the same) and that L; and L, must have different
MYV parity (thus L and Lg must be the same).

Thus, we can think of the region of the paper formed by Ls, L, and Le as being
a “back wall” of our fold, in front of which we must arrange the 45° and 70° flaps.
One of these flaps can be in front of everything, but the other one will have to be
folded inside the model (since L, and Lj are different). No matter which we try to
fold inside the model, the Ls-L-Lg wall will not allow enough room for the fold to
lie flat without inducing more creases or ripping the paper.

Class tips

There is a very good chance that you will have students who believe that they
have managed to fold one of these crease patterns flat. If this happens, proceed
with the confidence that the students must have added an extra crease somewhere
or inadvertently moved one of the crease lines. If you have students working on
these in groups, you can impose the rule that you won't consider a crease pattern
to be successfully folded flat unless everyone in a group is able to duplicate the
effort. This will usually catch people who accidentally alter the crease patterns in
their attempts.

The last crease pattern (the lower right one on the handout), however, is par-
ticularly tricky. If students make their creases inaccurately, thus altering the 45°
and 70° angles a bit, they may actually get it to fold flat. Therefore it is important
to stress that they make the creases as accurately as they can on this model. Fold-
ing larger versions of this crease pattern (which can be made by enlarging inon a
photocopier) will help avoid such folding accidents.

Students who get taken by this activity may try to create their own impossible
crease patterns. If you think your class might fall into this category, try giving
them only the upper-right and lower-left examples on the handout. These both
have many vertices, and students can then be asked to find examples with fewer
vertices. Students who grasp the mountain-valley contradiction concept that is
present in the upper-right example will have a good chance at discovering the
upper—left example on their own. In fact, several students at the 2005 Hampshire
College Summer Studies in Mathematics turned this three-vertex example into a
two-vertex example by letting one of the vertices be off the paper, as shown below.

Ly L2
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By the same reasoning as before, crease lines L; and L, must have the same
mountain-valley parity, and this forces the top side of the square to intersect it-
self when folded. This is similar to, but perhaps easier to comprehend than, the
phenomenon encountered in the lower-right two-vertex example on the handout.

Further thoughts and investigations

These examples of impossible crease patterns exhibit problems on the current fron-
tier of flat-foldability research. I published two of these crease patterns (the upper-
and lower-left ones on the handout) in a 1994 paper [Hul94] which was also the
first paper (that I'm aware of) to communicate the Maekawa and Kawasaki The-
orem results. Two years later, Bern and Hayes [Ber96] proved that the general
problem of determining whether or not a given crease pattern is flat-foldable is
NP-complete. They even proved that if we are given the mountain-valley assign-
ment then the problem is still NP! This means that when it comes to deciding flat-
foldability, problems with mountain-valley contradictions, like those found in the
top two crease patterns on the handout, are easy to detect (can be determined in
polynomial time), but the problems of the paper self-intersecting, like in the bot-
tom two crease patterns, are much harder to detect.

This all means that it is the self-intersecting possibilities of paper folding that
make modeling origami so difficult. But difficult usually means interesting, as it
implies that origami is a lot more complex than one might have originally thought.
This is why there are a number of researchers now, like Demaine, Lubiw, and
O'Rourke, among others, who are studying the computational complexity prob-
lems found in paper folding. Indeed, these researchers, through the papers that
they authored in the late 1990s and early twenty-first century, have created a new
field of mathematics and theoretical computer science known as computational
origami. Work in this area has applications in a number of areas. As mentioned
in the Folding and Coloring a Crane activity, no one has managed to make a com-
puter model “virtual origami” perfectly (the NP-completeness mentioned above
is a major hinderance), and work in the computational aspects of paper folding
would help this effort. There are also applications in robotics and protein folding
in biology, as many computational origami problems can be reduced to problems
in “one-dimensional folding."”

Looking into more advanced problems in computational origami would be a
very rich area for undergraduate investigation. Examining the multitude of papers
on Erik Demaine’s web site (http://theorylcs.mit.edu/~edemaine) is a great place
to start.






Activity 18
FOLDING A SQUARE TWIST

For courses: geometry, discrete math, combinatorics, math for
liberal arts, intro to proof, modeling, abstract algebra

Summary

Students are given the crease pattern of a square twist (which can be folded easily
enough from scratch too) and challenged to fold it into something flat. When done,
the students should compare their models with each other and see if they did the
same thing. This leads to a discussion of the difference between mountain and
valley creases. Then we ask, “How many different ways can we assign mountains
and valleys to the square twist and have it fold up?”

Follow-up activity: What happens what we try folding more than one square
twist into the same piece of paper? Is there an organized way in which we can do
this?

Content

This is, at heart and when divorced from the other flat folding activities, a mod-
eling problem that involves discrete geometry and combinatorics. The twist fold
is also very engaging and requires no overhead, making this a doable activity for
a general freshman-level math class. On the other hand, proving one’s conclu-
sions in this activity can be tricky to do rigorously, making this a good exercise
for students learning proof. Finally, it offers a good situation in which Burnside’s
Theorem from combinatorial algebra can be applied.

Handout

The handout is written at a general level, where the square twist crease pattern is
presented and the basic question of how many different ways can it be folded up
is asked. It is left to the students to figure out what exactly they are counting and
how to go about doing so.
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Time commitment

Folding the square twist will take 25 minutes or so. Depending on how your stu-
dents choose to enumerate the number of ways to fold it, the rest could take an-

other 20 minutes.



HANDOUT

Folding a Square Twist

Activity: Below is shown a crease pattern. The creases are all on the 1/4 lines of
the square, but the center diamond needs to be “pinched” in place. Take a square
piece of paper and reproduce this crease pattern to see how it folds up.

To help you fold this, follow these instructions:

(1) Fold a 4 x 4 grid of creases on your square.
(2) Pinch the four crease segments that make the diamond in the middle.
(3) Draw the crease pattern below on your creases with a pen.

Then you can try to fold it up.

This origami maneuver is called a square twist and is one of the less obvious
ways in which paper can be folded flat.

Question: Look at your classmates’ square twists. Do they look the same as yours?
Are you sure? Work together to count how many different ways there are to fold
up this crease pattern (without making any new creases).
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SOLUTION AND PEDAGOGY

The square twist is a very nontrivial origami move. It represents an intricate way
in which we can make a piece of paper “shrink” or contract about a central poly-
gon. (Yes, there are also triangle, hexagon, octagon, etc. twists. You and your
students are encouraged to explore those too!)

As such, some students will have a hard time getting this crease pattern to
fold into something. I encourage helping students make this crease pattern in a
separate square piece of paper, rather than cutting out the one in the handout and
just folding that. I suggest this because I feel that actually folding the creases from
scratch helps students see this as an interesting property of folded paper, rather
than as some weirdly constructed crease pattern. This may help them explore the
different possibilities of the crease pattern. Also, keeping the handout whole will
allow them to take notes on it as they come up with different ways to fold the
square twist.

There are, of course, many ways to fold this crease pattern flat. Below are two
(bold lines are mountain creases, thin lines are valleys):

A=

—*

The top example is the “classic” square twist, where it is easy to see how the
center diamond rotates by 90 degrees when the crease pattern is folded. This hap-
pens in all ways we can fold it flat, although the center diamond is not always
completely visible. The bottom example has some nice symmetry properties, in
that both sides of the paper are doing the same thing (but rotated). Such models
are called iso-area by origamists. (See [Mae02] and [Kas87] for more information.)
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Now, given any speciﬁc way in which a student folds this crease pattern, you
can always get another one by switching all the mountain creases to valleys and
vice versa. But this quickly brings us to the question of what exactly are we counting?
Students need to decide if they are counting

(a) physically different folds, or
(b) symmetrically different folds.

In (a) we are really counting the number of valid mountain-valley (MV) as-
signments as if each crease had a name and so two MV assignments are different
if some crease gets a different assignment in them. In (b) we don't want to consider
two MV assignments that are the same under rotation to be different.

Both of these problems can be done by sheer exhaustion, since this crease pat-
tern isn’t so complex that it forbids going through all the possibilities systemati-
cally. In fact, I've had students take this approach, but rarely will they do it prop-
erly, delineating their method precisely to prove that no other possibilities exist.
Thus, not only is this approach the most lengthy to write up, it’s also very hard to
get right.

A better approach to (a) is to use some basic facts about flat folds, which the
Exploring Flat Vertex Folds activity usually reveals, but which can be indepen-
dently discovered in this activity. First, notice that each vertex in the square twist
crease pattern is the same, with angles between the creases, starting with the in-
ner diamond and going clockwise, 90°, 45°, 90°, and 135°. Maekawa’s Theorem
(M —V = 42, see the Exploring Flat Vertex Folds activity) tells us that at each ver-
tex we must have either three mountains and one valley or vice versa. (Students
who haven’t done the previous flat folding activities would only need to see that
the all four mountains and two mountains, two valleys situations are impossible.)
Also, the two crease lines surrounding the 45° angle cannot both be mountains or
both be valleys, for otherwise we’d have two 907 angles trying to simultaneously
cover a 45° angle on the same side of the paper, which would force the paper to
self-intersect. (This was called the “Big-Little-Big Angle Theorem” in the Explor-
ing Flat Vertex Folds activity.)

This all implies that choosing the MV assignment of the inner diamond in the
square twist crease pattern will force the rest of the MV assignment. This is be-
cause the diamond creases border all the 45° angles, and thus force the crease on
the other side of the 45° angle. Then, Maekawa’s Theorem forces the remaining
crease at each vertex.

Thus the solution to (a) is 2* (two choices for each crease in the diamond) or 16
different ways to fold this crease pattern.

If we actually look at all the 16 possible crease patterns, it’s easy to see which
ones are merely rotations of each other and thus solve part (b). But again, proofs
by exhaustion are hard to write up, and there are better tools to use. For exam-
ple, students could summarize the symmetry in various MV assignments for the
inner diamond. This could be done by stating that the diamond can have either
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four, three, two, one, or no mountain creases (and the rest valley). Breaking it up
into these cases and exploring the symmetry of their possibilities can lead to an
enumeration of symmetrically-different MV assignments of the square twist.

A more efficient way to do this same thing would be to use Burnside’s Theorem
(see [Gal01], [Tuc02]), which states that the number of ways N to color an object
whose symmetry group is G is

1
N = €] Z ¢(m)
nei
where ¢() = the number of colorings that are fixed under the symmetry 7. In
our case our group of symmetries is the rotation group of a square, which we will
denote G = {Ry, Rog, R0, R0 }-

Since Ry is the identity, we have ¢(R;) = 16.

Since they're inverses of each other, we have ¢(Rop) = ¢(Ro70). And if we
think about the inner diamond, the only ways in which we could two-color the
creases (where our colors are mountain and valley) that would be invariant under
907 rotation would be with all mountains or all valleys. Thus ¢(Rep) = ¢(Rz70)
=2.

For 180° rotations, we could, again, have all mountains or all valleys in our
diamond, or we could have them alternate MVMV or VMVM. Thus ¢({Rqg9) = 4.
So,

1 24

The six possibilities are shown below.

Enterprising students may want to also not count MV assignments that are
the same but only with mountains and valleys reversed. In that case the answer

would be 4.



Activity 19
MATRIX MODEL OF FLAT VERTEX
FOLDS

ey 4

For courses: geometry, linear algebra, modeling

Summary

This activity takes the following approach to modeling paper folding: when we
fold a piece of paper flat, we're really reflecting one part of the paper onto the
other. Thus, every time we make a flat fold, we're performing a reflection. Reflec-
tions of the plane can be modeled with matrices. So, students are given a simple,
four-valent flat vertex fold and asked to compute the 2 x 2 reflection matrices for
each of the crease lines. Then, they are asked what they get when they multiply
these matrices together. Does it make sense that we get the identity?

Content

This is an application of linear algebra, although the connection to geometry makes
this suitable to either a linear algebra or geometry course where basic matrix op-
erations can be assumed. The main result of this activity, that the product of the
reflections about creases, in order, about a vertex will be the identity if and only if
the vertex folds flat, is actually equivalent to the Kawasaki-Justin Theorem (from
the Exploring Flat Vertex Folds activity).

Handout

The handout is self—explanatory, leading the students through the activity of gen-
erating the folding matrices and Challenging them to discover what happens when
we multiply them.

Time commitment

Depending on how good your students are at constructing reflection matrices, this
activity could be fast, taking only 15-20 minutes, or longer, taking 30-40 minutes.
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HANDOUT

Matrices and Flat Origami

Idea: When we fold a piece of paper flat, we're really reflecting one half of the
paper onto the other half. We can use this to model flat origami using matrices.

I3 I2

45°
135°H I

Iy

Activity: Above is shown the creases of a flat vertex fold. Assume that the vertex
is located at the origin of the xy-plane.

Question 1: Find a 2 x 2 matrix R(l1) that reflects the plane about crease line I;.
Do the same thing for the other crease lines.

Question 2: What happens when you multiply these matrices together? Explain
what’s going on.
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SOLUTION AND PEDAGOGY

This activity is about flat origami, which encompasses all origami in which the fi-
nal model can be pressed in a book without crumpling or adding new creases. The
previous activities Exploring Flat Vertex Folds, Impossible Crease Patterns, and
Folding a Square Twist provide a good introduction to this topic. While students
don’t need to have seen these previous activities to engage in this one, instructors
may find perusing these previous activities very useful.

Before the students begin producing matrices, give them small squares of pa-
per and have them fold the vertex shown on the handout. Each crease line should
be made separately; [; and /4 are made by folding the paper in half from side to
side, but not creasing all the way through (stopping at the center), and I> and I3
are made by folding diagonals of the square (again, stopping at the center). Then,
all creases should be folded at the same time (say, /1 a mountain and -l valleys)
to obtain a flat vertex fold. Having a model in hand to look at will get the idea of
flat folding across to students and help them visualize the reflection matrices that
they’ll need to produce.

Students in geometry or linear algebra classes who have recently played with
matrices of various isometries of the plane should have no problem with the first
part of the activity. Sometimes students have a hard time with reflecting about the
line y = x or y = —x. For such students suggestions can be made on how to figure
this kind of thing out. For example, reﬂecting about ¥ = x, which is I, should
send the point (1,0) to (0,1) and the point (0, —1) to (—1,0). So our unknown
2 x 2 transformation matrix (with entries a, b, ¢, and d) should satisfy

(Fa)(o)=(3)me(00)(5)=(3)

Staring at this for long enough can allow students to figure out what the variables
are. Or they can multiply them out, get four equations in four unknowns, and
solve.

In any case, if R(];) is the reflection matrix about crease /;, then the solution to

R =5 %)
R =(1 5).
Ry =( % )
Ra=( 7' 1)

In Question 2, multiplying these matrices together should give

R(I1)R(I3)R(I2)R() = .

Question 1 is
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Or one could put the matrices in the reverse order. But the multiplication should
occur in the same order in which we encounter the crease lines, either going clock-
wise or counterclockwise about the vertex.

One partial reason for this is fairly simple: multiplying the matrices in order is
simulating the orientation of a bug walking around the vertex on the flat-folded
model. Since the bug should come back to where it started, in the same orientation,
the product of those matrices should be the identity.

However, while this argument is leading in the right direction, it is seriously
flawed. Trying to formalize it reveals the problem: Suppose that we let the region
between crease lines [; and I4 (the lower-right quadrant) be fixed and fold the rest
of the regions according to the crease lines. Let our bug begin in the fixed region
and follow a path that goes counterclockwise about the vertex on the unfolded
paper (but our bug will be walking on the folded paper, remember).

The bug will first walk across crease I1, and the reflection that the bug will
make will be R(I1). Fine. But then the bug will continue to walk and eventually
encounter crease /5, except I, will no longer be in the position it was on the un-
folded sheet. So the reflection matrix that models the bug walking around this
second crease will nof be R(I,)! It will be whatever the reflection is about the in-
age of I after the folding is done. Call this matrix L;. Then the bug will continue
walking and reflect about the images of I3 and 4 after they are folded; call these
matrices L3 and Ly4. Then, since the bug returns to the same region where it began,
we should have

Lylsloly =1
where we write L; = R(l;) to make it look nice. This is what students are likely
to get if they try a straight-forward approach, but it is not the same thing as the
product of the R(l;) matrices.
Nonetheless, this is a good direction in which to proceed. Let us compute the

matrix L,. One way to model the operation of this reflection is to first unfold crease
I3, then do R(Iz), then refold I;. Thus, we get

Ly = LiR(Iy)L; ' = R(h)R()R(h) "

Similarly, L3 can be modeled by unfolding /7 (in folded position), unfolding I1,
then performing R(l3) and refolding [ and I, (in folded position). Thus,

Ly = LyL1R(l3)L;'Ly?
= (RIIR()R(11) ") (R(L))R(I3)(R() ") (R(L)R(I2) " 'R(11) ™)
= R(L)R(I2)R(I3)R(I2) 'R(I) .
Similarly,
Ly = LsLoLyR(I4) Ly 'Ly 'Ly !
= R(I1)R(I)R(I3)R(I4)R(I3) 'R(l) 'R(1) .
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Then notice that

I = Lyl3LL,
= (R(I1)R(l2)R(I3)R(I4)R(I3) "R(l2) 'R(1) )
(R(I1)R(I2)R(13)R(I2) " 'R(1) 1)
(R(IN)R(I2)R(1) 1) - (R())
= R(I)R(2)R(I3)R(l4).

You can see how this could be generalized to flat vertex folds of any degree. But
this is not for the faint of heart when it comes to symbolic matrix manipulation!
Thus, pursuing this line of argument in full detail is not the easiest proof for stu-
dents to construct or follow. It is a great exercise in linear algebra, though.

Notice, though, how this proof highlights the surprising fact that the product
of the R(I;) gives us the identity. Remember that these matrices are all reflecting
about crease lines in the xy-plane! The crawling bug argument makes perfect logical
sense, but that is not what [ R(/;) is doing.

However, a more careful approach can make a variation of the bug-crawling
argument work. Let F be the region of the paper between crease lines I, and I .
Imagine that we rip this region in two, tearing the paper from the boundary of
the square (say, the point (1, —1)) to the origin. This turns F into two smaller
regions: F ! which is adjacent to l;, and F”, which is adjacent to Iy. Now perform
our reflections R(ly) through R(l1) in sequence to the region F”. Each reflection
will be simulating what the paper is doing as the creases are folded, and since the
vertex folds flat in the end, we must have F’ and F” lining up along their tear.
That is,

R(I)R()R(I3)R(14)[F") = 1.

This only proves that this matrix product is the identity on the region F”. How-
ever, a similar argument can show that it works for F/ as well, and we could have
chosen the rip to be on other regions of the paper. (Although in those cases we'd
need to cycle the matrix product around in the end, which can be done since each
matrix is its own inverse.) This argument is conceptually simple, however it does
require some creativity and sophistication with matrix operations to fully grasp.

If students shrink from detailed linear algebra, this result can be proven rig-
orously for any flat vertex fold using a version of the Kawasaki-Justin Theorem.
This might have been encountered by students in the Exploring Flat Vertex Folds
activity. It states that if a1, a5, - - - &y, are the angles, in order, between the creases
at a vertex, then this vertex will fold flat if and only if ay + a3 + - - - + ap, 1 = 180°
and an + ay + - - -y = 180°.

The idea is to use the fact that the product of two reflections is a rotation, and
the rotation will be twice the angle between the two reflection lines. Thus, when
we do R(I;)R(l;) and & is the angle between the creases [; and I;, we get a rotation
by 2ay. Then, R(l;)R(I3) will be a rotation by 2a3. Continuing in this way, we get
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that our product of reflection matrices is a rotation of the plane by angle
2000 + 2003+ - -+ 200, 1.

By Kawasaki’s Theorem, this equals 360°, and thus the product of the reflections
is the identity matrix.

The converse can be proven in the same way: if the product of the reflection
matrices generated by the crease lines of a vertex fold is the identity, then the
creases can fold flat (assuming the converse direction of Kawasaki-Justin).

In the theory of flat origami, this model is very useful. One can extend the basic
result of this exercise for general, multiple-vertex crease patterns in the following
way: Let 4 be any vertex-avoiding closed curve on the crease pattern of a flat
origami model, and let R(7y) denote the product of the reflections about the crease
lines that - crosses, in order. Then R(7y) = I. (See [bel02] for details.) This is a
necessary condition for general flat origami crease patterns, but it is not a sufficient
condition. See the Impossible Crease Patterns activity for examples.

Also, this model tells us a lot about what the paper does when it folds flat. If
we take a face F of a flat origami crease pattern and decide that F will remain fixed
as we fold the rest of the paper, then we can define the folding map to be the image
of any other face F’ in the crease pattern under reflections R(-y), where here 7 is a
vertex avoiding path from a point in F to a point in F’. Tt can be shown that this
map is well-defined, and it tells us where each region of the paper goes when the
paper is folded flat. For more information, see [bel02] and [Jus97].



Activity 20
MATRIX MODEL OF 3D VERTEX
FOLDS
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For courses: geometry, linear algebra, modeling

Summary
This is really a follow up on the Matrix Models of Flat Vertex Folds activity. The

concept is the same: the product of rotation matrices, in some sense, around a
three-dimensional vertex fold should give us the identity. But being in three di-
mensions, the rotation matrices are more challenging, and it’s more complicated
to prove that the product of the crease pattern matrices, in the proper order, will
return the identity. (We cannot rely on Kawasaki’s Theorem here!)

Content

This is a very challenging linear algebra application to three-dimensional geome-

try. It requires a solid command of rotations in R? and strong three-dimensional

visualization skills. It would be an especially good challenge for students inter-

ested in learning the types of linear algebra used in computer graphics.
Combined with the Rigid Folds 2 activity, this provides everything one needs

to animate a flat vertex fold opening and closing in Mathematica.

Handout

The handout asks students to fold a simple three-dimensional vertex fold and
compute the 3 x 3 rotation matrices for each crease line. Then, students are asked
to multiply them together to see what happens.

The second page can be given separately, if desired, since it gives the conclu-
sion of Question 2 on the previous page. Question 3 asks for an explanation of
why the product of the five matrices gave the identity. Question 4 asks for a proof
of the general case (which is quite a challenge).
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Time commitment

The matrix computations for this activity are tricky to visualize and would take
students a full 40-50 minutes to compute and multiply by hand. If a computer
algebra system is available, it could take much less time.



HANDOUT

Matrices and 3D Origami

Take a square piece of paper and make the below creases to form the 3D corner of
a cube fold.

/2
|
|
w2 b — _/:_ _
N
e |

The angles at each crease are the folding angles, which is the amount each
crease needs to be folded by to make the model.

Question 1: Let x; be the 3D, 3 x 3 rotation matrix that rotates R? about the crease
line /; by an angle equal to the folding angle at that crease. Find the five 3 % 3
matrices x1, ..., x5 for the above 3D fold. (Assume that the vertex is at the origin
and the paper lies in the xy-plane.)

Question 2: What happens when you multiply these matrices together?
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Question 3: In the previous question you should have gotten that the product
X1X2X3Xax5 = I, the identity matrix. Why is this the case?

Be careful with your answer. Remember that the y; matrices are rotations about
the crease line in the unfolded paper.

Question 4: Prove in general that if we are given a 3D single vertex fold with
folciing matrices X1, X2,- - ., Xn, then the product of these matrices, in order, is the
identity. Hint: Think of a bug crawling in a circle around the vertex on the folded
paper. What rotations would the bug make when it crosses a crease line?
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SOLUTION AND PEDAGOGY

This activity is an extension of the Matrix Model for Flat Vertex Folds activity and
should only be attempted in a course that has done this previous activity and is
studying rotation matrices in R>. The topic here is three-dimensional origami or,
more specifically, solid angle vertex folds. This is a specific type of three-dimensional
origami where each vertex forms a solid angle in space. In other words, the regions
of paper between the creases do not bend or twist—they remain rigid after the
model is folded.

While flat folding needs only reflection matrices to model successfully, solid
angle vertex folds need rotation matrices in R®. These rotation matrices y; will be
determined by the crease line, which will act as the axis of rotation, and the folding
angle ;. The folding angle represents the displacement of the paper from a flat,
unfolded position. In other words, the folding angle 6; = 71 — the dihedral angle
between the planes of paper at the crease line.

dihedral angle

8; = folding angle
= m—dihedral angle

Students need to be familiar with the standard rotation matrices in R3:

1 0 0 cosfl 0 —sind
Ryz(0) = | 0 cosf —sinf |, Ry (0)= 0 1 0 )
0 sinfl  cos@ sinf 0 cos@
cosfl —sinf 0
Ryy(6) = | sinf@ cos@ 0
0 0 1

Here R;;(#) rotates the ij-plane counterclockwise by angle 6. Label the crease lines
I, ..., 15 starting with the one on the positive x-axis and proceeding counterclock-
wise. We can compute most of the x; matrices by plugging the proper folding
angle for 6 into one of the above matrices. Care must be taken, however, since the
above rotation matrices rotate their respective planes with the assumed orienta-
tion that the positive axes are to the right and up. For I; this doesn’t matter; we get
x1 = Ryz(71/2). But it would be a mistake to think that y» = R..(71/2) because
the crease line I, intersects the xz-plane in the wrong orientation, with the positive
x- and z-axes in the upper left quadrant. To use the R,(f) matrix, we need to
view this rotation from the other side of the xz-plane, meaning that our rotation is
actually going clockwise, so 8 = —7/2. That is,

0 01
x2 = Ru(—m/2) = 0 10
-1 0 0
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The other x; matrices for the crease lines that lie on major axes are

1 0 0 1 0 0 -1 0 0
x1=( 00 =1 J,xa= 0 0 1 |,xs= 0 1 0
01 0 0 -1 0 0 0 -1

Crease l4 is not on one of the main axes, so x4 needs to be computed differently.
An easy way to find it is via the composition of other rotation matrices; first rotate
the crease I; to the negative x-axis (call this matrix A), then rotate about the x-axis
by the negative of I4’s folding angle (call this matrix B), and then rotate back to the
original position (this will be A ). Then, we have x4 = A !BA. The matrix A
requires rotating about the z-axis by — /4, so we obtain

22 1 0 0 22
Xa=1 2 2 0 -1 0 _N2 2
2 2 2 2
0 0 1 0 0 -1 0o 0 1
01 0
=10 o0
00 -1

Students should test their matrices for correctness. This can be done by multi-
plying them by some choice vectors to make sure that they rotate properly. For
example, multiplying x; by the vector (0, 1,0) should return (0,0, 1), since this is
supposed to rotate the yz-plane by 90 degrees. Multiplying x4 by (—1,0,0) should
return (0, —1,0).

Multiplying the x; matrices together gives

X1X2X3XaX5 = 1,

although they could be multiplied in the reverse order as well and still get the
identity. The important thing is to multiply them in order as we travel around the
vertex, either clockwise or counterclockwise.

Multiplying five 3 x 3 matrices can be tedious, and if a computational package
that allows matrix multiplication is available, you might want to let your students
take advantage of it. On the whole, doing this activity with a mathematical com-
puting package, such as MATLAB, Maple, or Mathematica, at one’s side will allow
students to explore exactly what their matrices are doing more quickly. Being able
to “see” the matrices work can be a great learning experience for students.

Why does this happen?

Intuitively, you and your students might not be surprised that the product of the
Xi matrices gives the identity. After all, the same thing happened for flat vertex
folds, right?

But think about what is happening here. We're multiplying matrices that rotate
about lines lying in the xy-plane. It's true that the folded paper must come back
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to where it “started” so as to not rip, but that involves rotating about lines that lie
in R3, no longer in the xy-plane. Why should the mere product of the xy-plane
rotations give us the identity?

What is being seen in this activity is an example of a necessary condition for a
single vertex to fold up into a three-dimensional shape while keeping all regions
of the paper between creases flat and rigid. This necessary condition is not the
only one of its kind we could make to model such folds, but it is the most easily-
computed, since it only requires xy-plane rotations and doesn’t have to keep track
of how the paper moves in R3. Seeing why this always works, however, requires

a proof. (Taken from [bel02].)

Theorem: Let v be a solid angle vertex fold that preserves the flatness of the regions
between the creases. Let x1, ..., X be the rotation matrices, in order, about each crease
line of v by the respective folding angles. Then [T, x; = I.

Proqﬁ A classic “bug-walking” argument can help illuminate what’s going on.
(This will work in the same way as for the flat matrix model but will be more
conceptually tricky.) Imagine the unfolded paper sitting in the xy-plane with the
vertex v at the origin. Fix the region of the paper, call it F;, between the creases [;
and I; and label the other regions F,, Fs, .. ., F; similarly, going counterclockwise
around the vertex. Leaving F; fixed in the xy-plane, fold the other regions along
the crease pattern into the three-dimensional fold.

Now imagine a bug standing in F; on the folded model and let this bug crawl
around the vertex in a counterclockwise path (when viewed on the unfolded crease
pattern). When the bug crosses crease [; it will rotate in space; let Ly denote the
matrix for this rotation. Then the bug will be crawling on region F,, which no
longer lies in the xy-plane. Then it will cross crease I,; let L, denote the matrix for
the bug’s rotation about this crease line. Continue in this way, defining rotation
matrices L3, Ly, ..., L,. Finally, the bug will come back to face F; and be in the
same orientation as when it began. This implies that

LH'LH 1"‘L2L1 = 1'

This is the matrix product that most people really have in mind when they think
that the result we're trying to prove is “obvious.”

Now, what are the L; matrices? Since F; is fixed in the xy-plane, we have L; =
X1. But Ly is more complicated. One way to envision L is to first unfold /1, then
perform the I, crease with matrix x>, then refold 1. The product of these three
rotations will result in the bug’s rotation around crease I in its three-dimensional
position in R3. That is, we get

Ly = LixoLy .

Similarly, we have Ly = LyLix3L, lLi ! since we can model the bug’s crossing
crease I3 on the folded model by unfolding I, then unfolding [, then performing
X3, then refolding I and 1.
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In general, L; = (redo the previous Ls)y;(undo the previous Ls in reverse
order). That is,
L= U—'i S D Ll)%i“—'i T Lgl]_}

Now, the thing is that these L; matrices simplify, since they're defined recursively.
We get

Li=x1
Ly = x1x2X1 "
Ly = (xaixaxg D xadxs(xy Dxaxs 'x ) = xaxexsxs X'

Li=x1 XXX,y Xy -

Plugging these into our identity, we get
I'=LyLy 1 Laly

= (?Cl © o Xn- 17(!!?(;',%1 o '/1’1.1)(.%1 o Xn=2Xn -1/"(“..12 t ‘?Cj 1} T (Xl?CZ?C].l)(Xl)
=X1X2 " Xn-

Bingo! O

Alternate proof: One can construct a proof similar to the “rip a region of the paper
in half” proof given in the flat vertex case, but it requires paying attention to a few
more details.

Each rotation matrix x; is determined by two things: the position of the crease
line /; in the xy-plane and the folding angle ;. Let F; be the region of paper be-
tween crease lines /1 and I, and imagine that we rip F; into two pieces along a rip
from the boundary of the square to the origin. Let P{ be the ripped region adjacent
to I} and F{’ the ripped region adjacent to I,;. Then, we perform the rotation yx, to
F/', moving it off the xy-plane. Then we perform yx,,_; to this transformed region,
and so on, so as to simulate what folding the paper along l,,,1,, 1,...,I; would
do to the ripped region F;’. Since this is a valid solid angle fold, this image of F/’
should line up with F{ after all the rotations, giving us

X1X2 - 'X?!(Fln) =1L

Now, if we try to do the same thing for region F{, we find that we’ll be using the
inverses of the x; matrices, since the folding angle for each of these will have to be
—b; instead of 6;. (This is because we're rotating F{ and imagining the rest of the
paper as being fixed.) Also, we'll get the matrices in reverse order, i.e.,

X}Irl"‘le)l/].l(F{} =L

But then we can multiply both sides of this equation by the original x; matrices, in
order, to show that x1x2 - - - x» = I on the region F.
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Then, we must extend this for other regions of the paper, and this becomes a
bit tricky because we must keep track of which y; matrices we can use as-is and
for which we must take the inverse. It does work properly, but this detail makes
this proof approach at least as tedious as the former proof given. Ll

Pedagogy

While the fundamental logic is similar here, the two-dimensional, flat case (as seen
in the previous activity) is much more simple. Visualizing reflections in the plane
is a lot easier that rotations in three-space. In the two-dimensional case we also
have the Kawasaki-Justin Theorem to help—there is no easy analog of this for
three-dimensional vertex folds.

Working through all the details of this activity may seem very difficult, since
there are numerous pitfalls. For example, students are not likely to remember to
make sure that they are using the R;; matrices with the proper orientation (with
the positive axes in the upper-left quadrant). If technology is available for students
to easily check their work, then I think it is entirely reasonable to expect them to
figure out all such details. In fact, the first page of the handout makes an excellent
test to see if students really understand all that goes on with three-dimensional ro-
tations. If technology is not available, then checking each matrix and multiplying
them does become tedious, but the educational value is the same.

While the proof of the general result is very technical, it's only utilizing geo-
metric visualization, careful attention to the order of matrix multiplications, and
cancellation of matrices with their inverses. All of this should be doable by a linear
algebra student or geometry student with a background in matrices. Instructors
can choose to develop the outline of the proof in class and then assign a thorough
write-up for homework or to make this proof the subject of a student project. The
details of this proof are much better for students to wrestle with and pin down
themselves. If such a proof were simply presented in class, the details would likely
be wasted on them, resulting in little understanding or growth.

This activity also begins to open the door to some exciting possibilities in draw-
ing three-dimensional folds using computer packages like Maple or Mathematica.
However, while the x; matrices as presented here could be used to simulate the
folded three-dimensional corner in such a computer program, not enough infor-
mation is included here to, say, animate it opening and closing, for example. De-
tails on how this can be done in some cases will be given in the Rigid Folds 2
activity.






Activity 21
RIGID FOLDS 1: GAUSSIAN
CURVATURE

For courses: geometry, differential geometry

Summary

The idea here is to have a sequence of handouts that let students explore the con-
cept of Gaussian curvature, see that paper (and thus all folded models) have zero
curvature, and explore what implications this has on rigid origami. Diagrams of
the Miura map fold are given to illustrate a model whose vertices pass the rigidity
test. Some simple vertex folds and the hyperbolic paraboloid are given an exam-
ples that don't work.

Content
This fits right into a differential or topics in geometry class. None of the prior flat
folding results are needed to understand this stuff. Several class days would be
needed to cover all this (unless, perhaps, the Miura map or hyperbolic paraboloid
are given as homework to fold), but this is assuming that Gaussian curvature has
not been previously introduced.
Handouts

(1) Introduces Gaussian curvature and lets the students try some easy examples.

(2) Examines the implications of the fact that the Gaussian curvature of a flat
sheet of paper is always zero. This leads us to applications to rigid origami.

(3) Instructions for the Miura map fold, a famous example of a rigid fold.

(4) Instructions for the hyperbolic paraboloid, a famous example of a highly
non-rigid fold.

209
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Time commitment

The first two handouts can easily take 40 minutes of class time each because of the
three-dimensional visualization involved. The two origami instruction sheets will
also take time, probably 30 minutes each, but can also be done for homework.



HANDOUT

An Introduction to Gaussian Curvature

Definition: The Gaussian curvature at a point P on a surface is a real number
k that can be computed as follows: Draw a closed curve I' on the surface going
clockwise around P. Draw unit vectors on the points of I' that are normal to the
surface. Then translate these vectors to the center of a sphere of radius 1 and
consider the curve I that they trace on the sphere. (This mapping from T to I is
called the Gauss map.) Then, letting I' shrink around P, we define the Gaussian

curvature at P to be

‘= li Area(T”)
= lim ———=.
r—p Area(I)

Gauss map

This can be difficult to compute, but not always. ...

Question 1: What is the Gaussian curvature of a random point on a sphere of
radius 1?7 Radius 2? Radius 1/2?

Question 2: What is the Gaussian curvature of a flat plane?

Question 3: What would happen if you tried to find the Gaussian curvature of a
saddle point, i.e., the center of a PringlesTMpotato chip?



HANDOUT

Gaussian Curvature and Origami

In the previous handout, you saw how a flat piece of paper will have zero Gaussian
curvature. This is because no matter what our choice of T is, the normal vectors
along the curve will all be pointing in the same direction, so Area(I’) = 0.

This means that we get zero in the numerator of our Gaussian curvature limit
equation no matter what T is. Therefore, when determining curvature on a piece
of paper, we don’t need to worry about the limit part of the equation—one choice
for I' should always give us Area(I") = 0. This will be very useful later on.

Question 1: Suppose that we take a sheet of paper and bend it. Should this change
the paper’s curvature or not? Explore this by determining the Gauss map of a
curve I that straddles such a bend, as pictured below.

P
—>
q

Question 2: Suppose that we make more than one fold, like in an origami model?

Draw what the Gauss map should be for the curve I' shown on the vertex fold
below. What should the curvature generated by I' be? Does this make sense?

mountain
= — — — valley

—>
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Question 3: The claim that you should have made in Question 2 is this: the Gaus-
sian curvature is zero at every point on a folded piece of paper. Use the Gauss
map that you made in Question 2 to prove that this is true for any curve I' around
a 4-valent vertex. (You'll need to use the fact that the area of a triangle on the unit
sphere is (the sum of the angles) — 7.)

Question 4: What is the connection between this Gaussian curvature stuff and
rigid origami (where we pretend that the regions of paper between creases are
made of metal and thus are rigid)?
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Putting the rigidity criterion to the test

Question 5: Use your conclusions from Question 4 to prove that it is impossible to
have a 3-valent folded vertex in a rigid origami model. Draw the Gauss map for
such a vertex to back up your argument.

Question 6: Now prove that it is impossible to have a 4-valent vertex in a rigid
origami model where all of the creases are mountains.



HANDOUT

The Miura Map Fold

Japanese astrophysicist Koryo Miura wanted a way to unfold large solar panels in
outer space. His fold also makes a great way to fold maps.

(1) Take a rectangle of paper and
mountain-valley-mountain fold it
into 1/4ths lengthwise.

V
N
A

parallel

(4) Fold the remainder of the strip be-
hind, making the crease parallel to
the previous crease.

(6) Repeat this process until the strip
is all used up. Then unfold every-
thing.

[

(2) Make 1/2 and 1/4 pinch marks on
the side (one layer only) as shown.

N

(3) Folding all layers, bring the lower
left corner to the 1/4 line, as in the

picture.

4

= parallel

(5) Repeat, but this time use the fold
from step (3) as a guide.

—— mountain

- - --valley

(7) Now re-collapse the model, but
change some of the mountains
and valleys. Note how the zig-
zag creases alternate from all-
mountain to all-valley. Use these
as a guide as you collapse it...

...In the end the paper should
fold up neatly as shown to the
right. You can then pull apart
two opposite corners to easily
open and close the model.
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The Hyperbolic Paraboloid

This unusual fold has been rediscovered by numerous people over the years. It

resembles a 3D surface that you may recall from Multivariable Calculus.

(1) Take a square and
crease both diago-
nals. Turn over.

/

(4) Bring the bottom to
the top crease line,
creasing only be-
tween the diagonals.

(7) Now make all the creases at once.

(2) Fold the bottom to

the center, but only
crease in the middle.

___}__

(3) Repeat step (2) on

the other three sides.

Turn over.

(5) Then bring the bot-

tom to the
crease line.

nearest
Again,

do not crease all the
way across.

It may help to fold the creases on
the outer ring first and work your

way in.

o

(6) Repeat steps (4) and

(5) on the other three

sides. Turn over.

(8) Once the creases are folded, the pa-

per will twist into this shape, and

you're done!
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(9) You can make a larger one by folding more divisions in the paper. The key
is to have the concentric squares alternate mountain-valley-mountain in the
end. You can do steps (1)-(3), do not turn the paper over, then do 1/4 divi-
sions in steps (4)—(6), then turn it over and make 1/8 divisions. Or you could

shoot for 1/16ths!

Question: Is the hyperbolic parabola a rigid origami model or not? (Could it be
made out of rigid sheet metal, with hinges at the creases?) Proof?
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SOLUTION AND PEDAGOGY

Handout 1: An Introduction to Gaussian Curvature

This handout gives a very intuitive definition of Gaussian curvature. If your stu-
dents have seen a more calculus-based definition, then you might want to spend
some time describing why they are equivalent. The definition given here turns out
to be very useful for modeling rigid origami. The handout does, however, ignore
technical details, like proving that this definition is reasonable and well-defined
no matter what curve I' we pick and how we choose to let it shrink to P. But the
point of the examples is for students to see that this definition does, indeed, give
us a reasonable way of measuring what the curvature of a surface in R3 might be.

Question 1. The curvature of a sphere of radius 1 will just be 1, since the areas in
the numerator and denominator of the limit definition will be equal.

A sphere of radius 2 is more tricky to analyze. One nonrigorous, “arm wavy”
approach would be to assert that since a sphere is perfectly symmetric, it should
have constant curvature on its surface, and thus the fraction Area(I')/Area(T)
should be constant over all choices of the curve I'. While this is true, it is not
obvious, but it might be the kind of thing an intrepid student with a solid grasp
of the concept of curvature would claim. With this assertion, we can take I to be
something for which Area(I') is easy to calculate, like an equator of the sphere. In
that case Area(T') = 47122 /2 = 87 and Area(I’) = 4712/2 = 271. Thus x = 1/4.

A similar argument will give that the curvature on a sphere of radius 1/2
should be ¥ = 4. In fact, the Gaussian curvature on a sphere of radius r will
always be 1/ r2, and proving this rigorously takes some more work, or at least
more knowledge of areas on spheres. For example, suppose that we take I' to be
a perfect circle around our point P on the sphere and we shrink I' to P evenly,
preserving its circle-ness. Then Area(I') would be the surface area of the spherical
cap with I as its boundary. Let r be the radius of the sphere and /i be the “height”
of the spherical cap made by T. (That is, & is the distance from P to the center of
the circle I inside the sphere.) Then, one can use calculus (either with surfaces of
revolution or by looking it up in the back of most calculus books) to get that

Area(T') = 2mrh.

Now, under the Gauss map, I’ will also trace out a circle on the sphere of radius 1.
If " is the height of the spherical cap made by I, then we have that i’ = h/r since
the I cap will be just like the I' cap with its dimensions scaled down by a factor
of r. (That is, the radius r scales down to radius 1, so the height of the cap h will
scale down to a height 1 /r.) Thus,

Area(T") B 27h! B 2mh/r 1

Area(T) ~ 2mrh ~ 2mrh 2
Question 2. A flat plane will, no matter the choice of T, have I be a trivial
curve—merely a point! Thus Area(I’) = 0 always, and we have x = 0. This is
a fundamental observation to make for applying Gaussian curvature to origami.




Rigid Folds 1: Gaussian Curvature 219

Question 3. This question is a little misleading. A saddle point is an example of
a surface having negative curvature. The way this happens with our definition is
that if we trace a closed curve I' clockwise around a saddle point P and take the
Gauss map, the image I’ will be traveling counterclockwise on the surface of the
sphere. Since I is traveling in the opposite direction of ', we say that Area(I")
will be negative, giving us a negative value for x.

Thus, students will probably find this question confusi_ng. The point is to force
them to think about what the Gauss map does for a curve around a saddle point
and that the image will have its orientation reversed. If students realize this, you
can ask them, “Well, what should going in the opposite direction do to the area?”
If they answer, “nothing,” then you can argue that this would imply that the cur-
vature at a saddle point can give the same value as the curvature on a sphere. Does
that make any sense? So, the convention of making opposite orientations produce
negative area gives us a way of distinguishing these different types of surfaces.

Students may think that we're just making this stuff up as we go along, and it's
important to tell them that yes, we are! The whole idea behind definition-building
is to develop notation and concepts that are useful—that allow us to discuss things
for which we previously had no language. With the concept of Gaussian curva-
ture, we can describe how much a surface curves by measuring it in a tangible
way. And this also gives us a way to classify types of curvature: positive curva-
ture that looks like a bowl, zero curvature that is flat, and negative curvature that
looks like a saddle point.

There are many other examples that you could do with your students to help
reinforce these ideas. For example:

o What is the curvature of the surface of a cone?

e What is the curvature of a cylinder? (This can be a good preparation for the next
handout.)

¢ What if we measure the curvature of a sphere from the inside (like, the bottom
half of a sphere, looking at the inside, bowl-shaped region). Will this give us
negative curvature or no?

Handout 2: Gaussian Curvature and Origami

The objective of this handout is to take a very elementary observation—that the
Gaussian curvature on a flat plane, or piece of paper, is zero everywhere—and
use it to make an equally simple, but often confusing, observation about Gaussian
curvature on origami. The real motivation is to tie this in to issues of rigid origami,
where the regions of paper between creases are kept rigid during the folding
process.

Question 1. Exploring the Gauss map for a curve I that travels over a bent flat
surface should indicate that Area(I'") = 0, implying that the curvature will be zero.
(See the figure below.) However, students who are paying attention to the limit
definition of Gaussian curvature can also make the argument that as the curve T
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contracts to a point, it will become so small that we might as well be considering
flat, unbent paper again. Either answer is valid for Question 1, but the former one
prepares them for the remainder of the handout.

P

Question 2. Drawing the Gauss map for this curve is quite tricky. All that is
really needed is for students to draw their vectors very carefully and pay attention
to details, but it’s still a challenge to visualize it.

Since the vertex fold given is four-valent, the Gauss map will have only four
normal vectors to consider, one for each region of the folded paper. Now, creases
are really just bends in the paper, so as I' crosses a crease line the normal vector
will swing from one direction (normal to the previous region of paper) to another
direction (normal to the new region being entered by T'). Thus, we’ll have four
normal vectors in the Gauss map, and I'" will consist of arcs, as in Question 1, con-
necting the tips of these vectors on the unit sphere. This is shown in the illustration

below, where p, q,r, and s are the four vectors normal to the regions of the folded

paper.

Now, because I is a curve on a folded piece of flat paper, we should have
Area(T’) = 0. One reason for this is because having multiple creases is just com-
pounding the situation in Question 1; if one crease doesn’t induce any curvature,
then why should more than one crease? Of course, that’s a very hand-wavy argu-
ment, although it does make intuitive sense. Students, in fact, may find this very
persuasive, but they should also see clearly that a more rigorous proof is needed.

In fact, at first it might seem hard to reconcile the fact that we should have
Area(T') = 0 with the bow-tie spherical polygon that these vectors trace in the
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Gauss map. But, there are a few things that the students need to convince them-
selves of before we can do that:

(1) Our crease pattern does generate a bow-tie region in the Gauss map. This
will always happen for any four-valent vertex fold that has three valley
creases and one mountain crease (or vice versa).

(2) The bow-tie can be thought of as two spherical triangles. If we pay attention
to the direction in which I' and I” are traveling, we see that one of these tri-
angles has the same orientation as I and the other has opposite orientation.

(3) The angles By, B2, B3, and By of the bow-tie (shown in the previous illustra-
tion) have a strong relationship with the angels, call them «;, between the
crease lines on the paper. If we let #; be the angle on the region whose nor-
mal vector gives us the corner of the bow-tie with angle B;, then we have
Bi = m— .

Item 2 should be reassuring, since the triangle with opposite orientation of T
will have negative area. Thus our bow-tie spherical polygon might, indeed, have
zero area if the two (unoriented) triangles are equal in area.

Item 3 is the most difficult to visualize and leads us to the solution of the next
question.

Question 3. The reason why B; = 7 — a; is because they are supplementary to
each other. Focus, for the moment, on the cases of angles 53 and f4. No matter
how the curve I behaves, the normal vectors along it will pivot about a crease line
in the same way. In fact, we can think of the normal vectors pivoting around a
crease and entering the new region along a trajectory that is perpendicular to the
crease line. This trajectory, and the trajectory by which it leaves, will determine
the angle B;. But this means that §; and «; will be related as in the below figure,
i.e., supplementary to each other.

¢
G

The cases of B and B3 are different because the lone mountain crease of the
vertex lies between angles ay and «;. If this crease were a valley, then the pivoting
normal vectors, say crossing angle a1’s region (vectors s to p to g), would behave
as in the other creases, and we’d have the supplementary angle ; being in the
interior of the spherical polygon made by the Gauss map at vector p. But, since
the crease is a mountain, the vector p will swing in the opposite direction (to the
right, instead of the left on the previous Gauss map illustration). Angle p; is still
as before, but since p moved in the other direction, f; will be an external angle to



222 Activity 21

the spherical polygon (as shown in the illustration). This means that the actual
internal angle at p in the spherical bow-tie will be 7 — 1. The same thing will
happen for the &> region of the paper, whose normal vector is 4, making its internal
angle for the bow-tie 7 — B.

So, if we let 6 be the angle at the bow-tie’s intersection point, then we can
compute the area contained by our spherical bow-tie, which is Area(I"):

Area(T") = (Areaofthes —r — @ triangle) — (Area of the p — g — 6 triangle)
(B3+Patb—m)—(m—pr+m—Po+0—7)

Pr+ P2+ B3t Py — 27

= T —]+ 70—+ 7T — 3+ 77—y — 27T

= 21— (a1 +ar +az+ay) =0.

Here we used the fact that the area of a spherical triangle is the sum of the inter-
nal angles minus 7. (See [Hen01] for details.) This shows how the zero curvature
property of the paper is preserved when we fold a four-valent vertex. Higher
valency vertices can be analyzed similarly, although the pictures get much more
complicated.

Question 4. This is the first time in these handouts that rigid origami is men-
tioned, and it’s about time! The fact is that when using Gaussian curvature in this
way to analyze and model paper folding, we are assuming that the normal vectors
are constant over the regions of paper between crease lines. In other words, we are
assuming that the paper is rigid except at the creases.

This means that if an origami fold is rigid, then we will be able to compute the
Gauss map of any curve I' drawn on the folded paper and show that we’ll have
Area(T') = 0. This is the answer to expect of students for Question 4.

However, also note that if this Gauss map computation does not work, it will
prove that the fold is not rigid. We will use this tool in the next series of questions.

Question 5. Suppose that we have a rigid origami model with a vertex of valency
three. Then, if we let our curve I be a closed loop around this vertex, we'll get
three normal vectors. Because of the creases, none of these vectors will point in
the same direction, so the Gauss map will trace out a spherical triangle on the unit
sphere. There’s no way this can have zero area (unless the triangle is redundant,
having one side of length zero, which the three different vectors forbid), so this is
impossible to do rigidly.

e
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Question 6. This is actually similar to Question 5. If a four-valent vertex has all
mountain creases (or, for that matter, all valleys), then the Gauss map will give us
a spherical quadrilateral. That is, we won't get the bow-tie phenomenon as in the
Question 2 example. Such a spherical quadrilateral cannot have zero area, making
this impossible.

Pedagogy. This is definitely an advanced geometry activity, ideally suited for a
differential geometry class or a geometry class where spherical geometry is being
fully explored. Students need to know the formula for calculating the area of a
spherical triangle. They also need to be very comfortable with visualizing normal
vectors and how they can move about in three-dimensional space.

Much of this activity is wasted on the students, however, if they don’t already
have a sense of what it means for origami to be rigid. In particular, they need
to understand that while many origami models, like single vertex folds and the
Miura map fold, are rigid, there are many that are not. Prior to this activity the
students should have the experience of folding a non-rigid origami model. The
hyperbolic parabola model serves this purpose, as does the “classic” method of
folding the square twist, which can be found in the Folding a Square Twist activity.
(Although note that proving the square twist is non-rigid is much harder; see the
Rigid Folds 2 activity.)

Handout 3: The Miura Map Fold

This is a very interesting fold that is included here because it might very well be
the most famous example of a rigid origami model. It even has applications to
space science, of all things.

Koryo Miura invented this fold while searching for a way to collapse a large
solar panel into a package that could be attached to a space satellite and fit inside
a rocket capsule. This fold seems good for this purpose because one can imag-
ine each parallelogram region of the crease pattern being a solar cell, and these
could be taped together to make foldable creases. But the only way in which this
would work is if this is a valid rigid origami model (assuming that the solar cells
are not flexible). In an attempt to verify that this fold is, indeed, rigid, Miura mod-
eled it using Gaussian curvature, as done in this activity. (See [Miu89].) While
this doesn’t prove that it’s rigid, it does verify that at some level there’s nothing
preventing it from folding rigidly.

Subsequently, Miura discovered that since this model opens and closes so eas-
ily, it makes an ideal map fold. In fact, one can buy Tokyo subway maps that are
folded in this way.

This can be a difficult model to teach and for students to fold. The crease pat-
tern is rather ingenious; it’s merely a slight variation from a standard square grid,
but the minor deviation in the angles from 90° is what makes the model work. At
the same time, this makes the model a challenge to fold. In step (7), where the
direction of some of the creases need to be changed to get the proper mountain-
valley pattern, it can be easy for students to lose this deviation from 90°. If this
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happens, then when they re-collapse the model they'll lose the zig-zag staggering
of folds that steps (2)-(6) produce, and the model won't open and close easily.

One way to keep this from happening is to make sure that the creases made
in steps (2)—(6) are sharp. Also, calling attention to the angles being made in steps
(2)-(6) and emphasizing that these angles must be preserved in the end can help.

The application of this model to solar panel arrays in space satellites can be dra-
matically made if the instructor prepares a much larger Miura map fold in advance.
That is, obtain a large rectangle of heavy paper (heavier than copying paper, ob-
tained from an art supply store, say) and in step (1) fold it into 1/8ths or 1/16ths
lengthwise. Then proceed as before. In step (7) you'll have more creases to reverse,
so do this carefully and with patience. It really pays off; the finished model will
be small enough to fit into your pocket but can expand to your entire arm-span
(assuming you use large enough paper).

Handout 4: The Hyperbolic Paraboloid

This model has a strange history. Detailed instructions for it can be found in some
origami books (like [Jac89]) and on the web, but it has been claimed that this curi-
ous folded shape was discovered by Bauhaus artists in 1920s Germany. Numerous
origami artists have discovered this model themselves, making it impossible to at-
tribute to any one person.

It's also nothing less than amazing that the paper wants to take on this hyper-
bolic paraboloid shape when the concentric squares are folded in paper. It can be
fun to have students conjecture as to why the paper acts in this way. One way of
explaining it is to look at the quarters of the paper divided by the diagonal creases
from step (1). In each of these quarters there are parallel creases that alternate
mountain-valley-mountain-valley. Now, one sure-fire way of giving a flat sheet
strength is to corrugate it. Architects have used this technique for decades, know-
ing that a vertical, flat concrete slab is not nearly as strong as one which zig-zags
back and forth. Our alternating mountain and valley creases in each quadrant of
the hyperbolic paraboloid provide such a corrugation, which makes the sides of
the paper want to remain straight as the model collapses. The only way to bring
the sides of a square together without bending those sides is for two of them to
go “up” and two to go “down” in space. That is what we see happening in this
origami model.

Teaching tips. One pitfall when teaching this model is that there will always be
students who make their creases in steps (2)-(6) go all the way across the paper.
While this isn't a fatal error, it does make the final collapsing more difficult.

The version shown in these diagrams is a 1/4 hyperbolic paraboloid (each
quadrant of the paper is folded into fourths). Students should be strongly encour-
aged to make 1/8 or even 1/16 versions. In fact, the instructor should make at
least a 1/16 version to show the class, and if possible obtain a large square of pa-
per and attempt a 1/32 version. Such large hyperbolic paraboloid models are very
impressive. The combination of straight line creases, smooth curves, and geomet-
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rical nature of the model is often too much for students; they’ll have to make one of
their own. The only trick needed for making these larger versions is to keep mak-
ing the 1/2, 1/4, 1/8, etc. divisions on the same side of the paper, and then flip
the paper over before making the last set of divisions. This will make the creases
alternate MVMYV in the proper way.

Collapsing larger versions is more tricky, however. Once all the creases are
made, one needs to start by folding the outer-most square ring, then the next one,
and the next, and so on. As this is being done the paper will start to buckle, want-
ing to take on the hyperbolic paraboloid shape. This can create tension in the pa-
per, making it difficult to fold more of the square rings. One way to overcome this
is to collapse the corners, pressing them flat as you work your way to the paper’s
center. The diagonal creases of the square will be divided into small segments that
alternate MVMV as well. But pressing the corners flat is only a way to get at the
square rings in the center of the paper; they will need to be opened (relaxed, so as
to no longer be pressed flat) for the final model to take on the proper shape.

Answering the question. The main reason for including this model in the activ-
ity is because it provides a great example of highly non-rigid origami. Only two
regions of the paper (the center-most triangles) remain rigid in this model—all the
other trapezoidal regions twist in space. This can be noticed in the actual origami
model, but that doesn’t explain why it is happening.

It turns out that both of the problems encountered in Questions 5 and 6 of the
Gaussian Curvature and Origami handout are present in the hyperbolic paraboloid
model. The figure below illustrates this. First of all, when the model is folded,
there will be two vertices of valency three on opposite corners of the center-most
square. (Note that one diagonal of this center square is not used in the final,
folded model.) It is very unusual to encounter vertices with exactly three creases
in origami, so this by itself is interesting. But the solution to Question 5 implies
that the regions bordering these vertices cannot all be rigid.

valency 3 vertex

Also, if we draw a curve I’ on the paper that circles through a complete square
ring (as shown above), then it will cross only four creases that will either all be
mountains or all be valleys. By the same argument used in Question 6, this is
impossible if the model were to be rigid. Since such a curve I' can be drawn on
any of these square rings, this proves that non-rigidity will exist throughout the
model.
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Credits and further problems

As mentioned above, Koryo Miura developed this Gaussian curvature model of
rigid origami, apparently sometime in the early 1980s (see [Miu89]). However,
David Huffman, of Huffman code fame, explored this same model in a ground
breaking paper in 1976 (see [Huf76]). These discoveries seem to be independent
of each other, but as is often the case with researchers in different countries, it is
difficult to tell.

In [Miu89], Miura gives another application of Gaussian curvature to a specific
origami fold that can make a very interesting homework problem, exam question,
or further example for students.

The fold. Take a square piece of paper and fold it in half twice, as one would
fold any piece of paper to make it smaller. The crease pattern for this fold is very
simple: just four crease lines where the angles between the creases are all 90°.
There will be three valley creases and one mountain (or vice versa).

The task. Prove that this four-valent vertex cannot be folded rigidly in a continu-
ous manner from the unfolded state to the flat, folded state, folding all four creases
at the same time.

Proof: Since the angles «; between the creases are all right angles, we also have, us-
ing the notation of the previous analysis of four-valent vertices with three valleys
and one mountain crease, that §; = 90° fori =1,...,4.

Now, when the paper is completely unfolded, the Gauss map for any curve I
about the vertex will be just a point, giving us Area(I') = 0. But, as soon as we
start folding all of the creases rigidly, the point in the Gauss map will bloom into
a spherical bow-tie quadrilateral whose angles f§; are all right angles. However,
it is impossible to have a bow-tie quadrilateral with all right angles drawn on the
sphere unless all four of its corners lie along a great circle. (See the illustration
below.) Trying to actually draw such a quadrilateral on, say, an orange or a tennis
ball makes this clear; after drawing, say, the two right angles at vectors p and g,
whose points on the sphere are connected by a segment of a great circle C, then
the sides at p and q that extend perpendicular to C would have to intersect at the

By
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“North Pole” of C. Continuing these arcs, the only place where they could meet
vectors r and s to form right angles would be on the opposite side of C.

What does this mean? It means that there’s no way to go from the unfolded
state to a folded state using all four creases at the same time. If we use all four
creases, the Gauss map produces a bow-tie that mustimmediately have the vectors
on a great circle.

However, the Gauss map does tell us what we can do rigidly with this fold.
What does it mean for all the vectors p, g, r, and s to lie on a great circle? We didn't
need to mention this before, but the lengths of the arcs between vectors in the
Gauss map equals the folding angle between these vectors’ regions of paper (which
is 71— the dihedral angle between these planes of paper). So, if p is opposite s on
the great circle C, then the folding angle between these regions of paper is 7, ie.,
their dihedral angle is zero. The p region has been folded flat in top of the s region.
Similarly, the g region has been folded flat on top of the r region. In other words,
the square of paper has been already folded in half. The lengths of the arcs pg and
rs on the Gauss map sphere tell us how much the other creases have been folded.

This tells us a legitimate way to rigidly fold this model: fold it in half com-
pletely and then fold it in half again. Of course, we already knew this, but visu-
alizing what this does to the Gauss map is interesting. Folding it in half the first
time keeps, say, vectors p and g on top of each other in the Gauss map (same with
r and s. Thus, during this first fold, the Gauss map image is an arc, which gives
Area(I") = 0. When the first fold is completely folded flat, we’ll have all out vec-
tors on a great circle. Then we can make the second fold, which will split apart p
and g (and r and s), giving us the bow-tie in the above illustration, which clearly
has Area(T’) = 0.

It’s remarkable that if we change any of the angles «; on this fold by a little bit
then this argument breaks down completely and the vertex will be rigidly foldable
by folding the creases at the same time. In fact, the Miura map fold vertices are

only slight deviations from the all-right-angles fold. O






Activity 22
RIGID FOLDS 2: SPHERICAL
TRIGONOMETRY

d

For courses: geometry, differential geometry

Summary

Students use spherical trigonometry to discover strong relationships between the
dihedral angles of a four-valent flat vertex fold as it opens and closes rigidly (that
is, each region of paper between the creases remains rigid). These results can then
be used to prove that certain flat-foldable crease patterns cannot be folded rigidly.

Content

The spherical law of cosines is extensively used, as well as the Kawasaki-Justin
Theorem (four-valent case) from the Exploring Flat Vertex Folds activity. This is
meant to follow the Rigid Folds 1 activity, although it does not make use of Gaus-
sian curvature. However the results about non-rigid folds fit nicely with the previ-
ous non-rigid results. To fully appreciate the results on the square twist’s rigidity,
students will need to have seen the Folding a Square Twist activity previously.

Also, the dihedral angle relationships are key to making a computer anima-
tion (via Maple or Mathematica) of origami folding and unfolding smoothly and
rigidly. Combining this with the techniques in the Matrix Model of 3D Vertex
Folds activity provides everything that is needed to create such animations.

Handouts and time commitment

The handout has two pages and two parts, which should probably be given sep-
arately. The first page helps students discover how certain dihedral angles of a
four-valent flat vertex fold are equal and will take about 20-30 minutes to com-
plete fully. The second handout leads students through discovering that some of
these dihedral angles will always be greater than others and challenges students
to use this to prove rigorously that the square twist is not a rigid fold. That would
also take 20-30 minutes, or longer if the students have never seen the square twist
before.

229



HANDOUT

Spherical Trigonometry and Rigid Flat
Origami 1

Consider a degree 4 flat vertex fold, as shown above with the angles on the crease
pattern ay,...,aq and the dihedral angles between the regions of folded paper
d1,...,04. This is easy to visualize if you imagine the vertex being at the center
of a sphere and look at the spherical polygon the paper cuts out on the sphere’s
surface.

If 4, is the lone mountain crease, let { be an arc on the sphere connecting the
4 and the &, corners of this polygon, which divides it into two spherical triangles.
Then, we can use the spherical law of cosines:

cos g = COS X1 COS QA + Sin 15} sin 7 COS 51 (1}
Cos ¢ = COS i3 COS (tg + Sin g sinay cos &y (2)

Question 1: Remember that since this vertex folds flat, Kawasaki’s Theorem says
that a3 = m — ay and a4y = 77 — az. What do you get when you plug these into
equation (2) and simplify?

Question 2: Subtract this new equation from equation (1). Use this to find an
equation relating the dihedral angles 61 and d3. What about d; and 64?2



HANDOUT

Spherical Trigonometry and Rigid Flat
Origami 2

O3
When studying this subject, origami master Robert Lang uses spherical trigonom-
etry and the picture above to derive the following equation:
sin” &) sina; sin &y

1—cos¢ '
Question 3: What does this equation tell us about the relationship between the
dihedral angles 41 and J5?

COSdy = COsd; —

Question 4: Remember that these results assume that the paper is rigid between
the creases (for otherwise our spherical polygons would not have straight sides).
So use your answers to Questions 2 and 3 to prove that the square twist, shown be-
low, cannot be folded rigidly. (Bold creases are mountains, non-bold are valleys.)

N
NS
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SOLUTION AND PEDAGOGY

This material was originally developed by Robert Lang [Lan01], although it is the
same kind of mathematical model that engineers use to study robotic arm move-
ments, what they call kinematics. Devin Balkcom’s Ph.D. thesis [Bal04] on creating
a robot to do simple origami has a summary of this approach.

These handouts do not require that students remember the spherical law of
cosines. In fact, it is very unlikely that any of your students will have seen it before.
But, since the handout provides the formula for them, this can be thought of as a
way to introduce the spherical law of cosines. Students are typically not surprised
at all that a version of the law of cosines exists for the sphere, and instructors can
refer to [Hen01] for more information on it. But this should not get in the way of
the main content of the activity.

Students can have a very hard time visualizing this activity. One must pay
careful attention to the difference between the plane angles a; (the angles between
the crease lines) and the dihedral angles 6; (the angles between the rigid planes
of paper as it’s being folded). Some students may need multiple explanations
on how one even measures a dihedral angle (by measuring the angle made on
a plane orthogonal to the intersection line of the two regions of the paper) and
why the dihedral angles will be the same as the interior angles of the spherical
quadrilateral (since the fold’s vertex is at the center of the sphere, each crease line
becomes a radius of the sphere, so a plane tangent to the sphere at one of the angles
will be orthogonal to this crease line).

This material does fit in perfectly with three-dimensional solid angle geometry,
where similar questions about plane versus dihedral angles are commonplace. See
[Cro99] for a fine introduction to such geometry and its relation to polyhedra and
Descartes’ Theorem.

Question 1

The main thing for students to remember here is that cos(7T — a) = cos « for any
angle 0 < a < 7. (So we're actually using the fact, as seen in the Exploring Flat
Vertex Folds activity, that all crease angles in a flat vertex fold must be less than
180°.) Then, when we plug in the results of Kawasaki-Justin into equation (2), we

get

Cos ¢ = COS @7 COs &y + sinaq sinay cos d3.
Question 2
Subtracting these two equations gives us
sinag sinaz(cos dy — cos dy) = 0.

Since none of our angles a; are zero or 180°, this means that cos J, = cosd. Now,
the range for these dihedral anglesis 0 < §; < mand 0 < 43 < 7, so this implies
that (51 == 53.
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Wow! This means that for a four-valent rigid vertex that folds flat, the opposite
crease lines that have the same mountain-valley parity will have equal dihedral
angles as the vertex is folded and unfolded.

A similar result is true for 6, and &, but since 4 > 7, the picture is different. If
instead we connect the J1 and 43 corners of the spherical quadrilateral with an arc
¢, this arc will be outside the quadrilateral since the J4 crease is a mountain and
thus forms a concave corner of the quadrilateral. See the figure below.

o

But this still gives us two spherical triangles to which we can apply the spher-
ical law of cosines:

COSC = COSyCOS i3 + SIn ity Sin &3 COS &y

CoSs¢ = COS&]COSay + sina sinay cos(2m — dy).
Using Kawasaki-Justin and subtracting then gives us
sinaq sinaz(cos §y — cos(27m — d4)) = 0.

Therefore, we have that §; = 2 — d4. In other words, the opposite crease lines
that have opposite mountain-valley parity will have equal dihedral angles as well,
although since J; is convex it has to be the complement of this angle.

The second page of the handout starts off a bit unfairly—a complicated formula
relating the dihedral angles é; and §; is given without proof. The reason for this is
that the derivation of this formula is very yucky, involving the equations from the
previous page, the spherical law of sines, and some horrendous trigonometric ma-
nipulations. Students should not be asked to develop this formula by themselves
(although it could make for a very hard extra credit problem). Furthermore, the
construction of this formula does not help us answer the following questions. For
the purposes of studying rigid origami, the emphasis should be placed on what
such a formula can tell us and how it can be used.

Question 3

The observation to make here is that the quantity (sin? §; sin a; sinaz) /(1 — cos &)
is positive. This is because the sind; term is squared and 0 < ay < 7,0 < ap < 7,
and cos ¢ < 1. Therefore, we have that cos §; < cos d;. Since cosine is a decreasing
function from 0 to 7T, this means that

67 > dy.
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In other words, when a four-valent flat vertex folds and unfolds rigidly, the
opposite-parity pair of opposing dihedral angles will be greater than the equal-
parity pair of opposing dihedral angles (where parity means mountain-valley

parity).

Question 4

As one example of how these results can be used, students are asked to use them to
prove that the classic square twist is a non-rigid fold. Students who have done the
Folding a Square Twist activity will find this especially interesting. If that activity
has not been done, students will need to be shown how to make this crease pattern
fold up into a square twist. Actually folding one does give evidence that the fold
is non-rigid; the square diamond in the middle (which does the twisting) does not
remain rigid while the twist is being done.

For a proof, suppose that we can fold it rigidly, and consider the ﬁgure above
where the dihedral angles of the square diamond creases are labeled 4y, ..., d4.
Then, notice that at the top vertex, J; is part of a same-parity pair and &, is part
of an opposite-parity pair. Thus d, > é;. Then, looking at the right vertex, we
see that d; is part of a same-parity pair and J3 is part of an opposite-parity pair, so
J3 > &2. Proceeding then to the bottom vertex and then to the left vertex gives us
the chain of inequalities

31 < 6y <83 < 84 <6y,

which is impossible.

Follow-up

If the Folding a Square Twist activity has been done by your students, you should
have them go through the other mountain-valley assignments for the square twist
to see which of them are rigid. Note, however, that if a dihedral angle contra-
diction occurs like the one above, then the crease pattern is not rigid. But, if a
dihedral angle contradiction does not occur, it does not prove that the fold is rigid,
merely that the dihedral angles work out OK. This, combined with the Gaussian
curvature model, makes convincing evidence that such crease patterns are indeed
rigidly foldable, and it’s up to students (and faculty) to decide whether or not



Rigid Folds 2: Spherical Trigonometry 235

these conditions constitute a good enough definition of “rigidity” to qualify as a
proof.

Notice also that by taking arccosines of both sides of Lang’s equation on the
second page of the handout, we obtain a formula for &> in terms of §; and the «;
angles. Thus, we have ways to determine all the dihedral angles of a four-valent
flat vertex fold from one angle 4. That is, we can think of 4; as being a parameter
ranging from 0 to 7 that determines where the rest of the paper should be. In fact,
even if we had a larger crease pattern with only four-valent flat-foldable vertices
(like the Miura map fold), this one parameter would determine all of the other
creases’ dihedral angles.

Thus, we can determine the folding angles based on what's happening with
one crease. This, combined with the matrix transformations of the Matrix Model
of 3D Vertex Folds activity, gives us everything that we need to model such folding
and unfolding of rigid origami crease patterns in a computer algebra system.






APPENDIX: WHICH ACTIVITIES GO
WITH WHICH COURSES?

Presented here is a list of which activities might go best with which mathematics
courses. Note, however, that to a certain extent, such a classification is very hard
to do. Some activities are relevant to a number of courses. On the other hand, one
could argue that all of the activities in this book could be looked at as geometry
activities or experiments in mathematical modeling. Readers should feel very free
to explore these projects themselves to see their relevance.

High-school teachers should also completely disregard this list, as it's designed
with the college curriculum in mind. Rather, they should read through these activ-
ities and search for things that would be suitable. Of course, many of the activities
under Geometry might be good fare for a high-school geometry course, but even
here teachers will have to pick and choose because of the differences between col-
lege and secondary educational approaches.

Those looking for math club or math circle activities should just read the whole
book; literally every activity has potential for groups of math club students to
become engaged.

Activity Page
“Math for Liberal Arts” Course:

Haga’s “Origamics” 8 75
Folding a Butterfly Bomb 9 93
Business Card Modulars 10 103
Five Intersecting Tetrahedra 11 111
Precalculus/Elementary Algebra:
Folding Equilateral Triangles in a Square 1 1
Dividing a Length into nths Exactly 3 27
Folding a Parabola -+ 33
Geometry:
Folding Equilateral Triangles in a Square 1 1
Dividing a Length into nths Exactly 3 27
Folding a Parabola 4 33
Can Origami Trisect an Angle? 5 47
Solving Cubic Equations 6 53
Folding Strips into Knots 7 67
Haga’s “Origamics” 8 75
Folding a Butterfly Bomb 9 93
Five Intersecting Tetrahedra 11 111
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Activity Page
Geometry: (continued)

Making Origami Buckyballs 12 125
Making Origami Tori 13 139
Modular Menger Sponge (fractal geometry) 14 151
Matrix Model of Flat Vertex Folds (transformation geometry) 19 193
Matrix Model of 3D Vertex Folds (transformation geometry) 20 199
Rigid Folds 1: Gaussian Curvature (differential geometry) 21 209
Rigid Folds 2: Spherical Trigonometry 22 229
Calculus:
Folding Equilateral Triangles in a Square 1 1
Dividing a Length into nths: Fujimoto Approximation 2 15
Folding a Parabola + 33
Five Intersecting Tetrahedra (vector calculus) 11 111
Number Theory:
Dividing a Length into nths: Fujimoto Approximation 2 15
Folding Strips into Knots 7 67
Combinatorics/Discrete Math/Graph Theory:
Dividing a Length into nths: Fujimoto Approximation 2 15
Making Origami Buckyballs 12 125
Making Origami Tori 13 139
Modular Menger Sponge 14 151
Folding and Coloring a Crane 15 159
Exploring Flat Vertex Folds 16 165
Impossible Crease Patterns 17 179
Folding a Square Twist 18 187
Linear Algebra:
Matrix Model of Flat Vertex Folds 19 193
Matrix Model of 3D Vertex Folds 20 199
Abstract Algebra:
Folding a Parabola 4 33
Can Origami Trisect an Angle? 5 47
Solving Cubic Equations 6 53
Folding Strips into Knots 7 67
Folding a Square Twist 18 187
Topology:
Making Origami Buckyballs 12 125

Making Origami Tori 13 139



Appendix

Introduction to Proof Course:
Haga’s “Origamics”
Exploring Flat Vertex Folds
Impossible Crease Patterns

Modeling:
Dividing a Length into nths: Fujimoto Approximation
Folding a Parabola
Exploring Flat Vertex Folds
Impossible Crease Patterns
Matrix Model of Flat Vertex Folds
Matrix Model of 3D Vertex Folds
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Activity Page

8
16
17

2

16
17
19
20

75
165
179

15
33
165
179
193
199
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